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EXECUTIVE SUMMARY 

This report documents the Neural Network False Alarm Filter (NNFAF) contract, an investigation 
and demonstration of the use of neural network technology to improve Built-in Test (BIT) by 
filtering out false alarms from the BIT output and by identifying intermittent faults. 

Neural Network False Alarm Filter Project Description 

The NNFAF contract was performed by Raytheon Company for Rome Laboratory at Griffiss Air 
Force Base, New York. It was a 2-year research contract which began in September, 1992 and 
ended in September, 1994. The purpose of the project was to identify, develop, and demonstrate a 
set of approaches for applying neural network learning techniques to improve the performance of 
BIT. The approaches focused on the need to filter out false alarms and to identify intermittent 
failures. 

The NNFAF methodology involved a state-of-the-art assessment of neural networks and BIT 
techniques, the selection of candidate BIT technique and neural network combinations for analysis, 
simulation of BIT techniques to generate neural network training and testing data, neural network 
development and training, and results analysis. The selected approaches were developed and 
implemented in a prototype, proof-of-principle demonstration. In addition, the impact of their 
implementation in fielded avionics systems was examined and the potential costs and benefits were 
analyzed. 

Many modern systems that employ BIT to automatically detect and report failures are susceptible to 
reporting a failure when the system is actually functional (false alarm). As a result, functional 
systems are often taken off-line for repair, where they are re-tested as functional (Re-test OK). 
Consequently, system availability is reduced and maintenance costs are increased due to increasing 
repair actions. Simple filtering techniques can be applied to limit the number of false alarms that 
are reported. However, the risk of filtering out valid failure reports increases with the amount of 
false alarm filtering. The NNFAF project investigated the application of neural networks (NNs) to 
Brr for the purpose of classifying BrT reports as false alarms or valid failures. 

The primary goals of the NNFAF contract were to: 

1. Improve the performance of BIT; 
2. Filter false alarms and identify intermittent failures; 
3. Utilize maturing neural network technology; and 
4. Assess the impact of neural network technology insertion in fielded avionics systems. 

A flow diagram of the overall NNFAF investigation methodology is shown in the figure below. 

The NNFAF effort consisted of the following major tasks: State-of-the-Art (SOA) assessment 
demonstration approach down selection, data generation using a custom-built BIT simulator' 
neural network development, performance of experiments, analysis of results, demonstration of 
results, and impact study. Current literature in the areas of BIT, false alarms, and neural networks 
were reviewed during the SOA assessment. The SOA assessment resulted in lists of all candidate 
BIT techniques, neural networks, and fault report causes (FRC) that could potentially be used in a 
detailed analysis. The down selection task reduced all possible combinations of neural networks 
BII, and fault report causes to the four most desirable demonstration approaches. The down 
selection task consisted of three phases using practicality, feasibility, commonality, and general 
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weighting criteria to choose candidate combinations of BIT techniques, fault report causes, and 
neural networks. 

DOWN SELECTION 

__—A  

EXISTING RAYTHEON 
EXPERTISE AND 
KNOWLEDGE 

• SYSTEM DATA 

. BIT KNOWLEDGE 

• NEURAL NET TOOLS 

• NEURAL NET 
EXPERTISE 

• FALSE ALARM 
TAXONOMY 

Overview of NNFAF Project and Investigation Methodology 

A simulator tool was designed to model the selected BIT techniques. It produced BIT fault reports 
in response to fault report cause inputs (such as excess temperature). The BIT simulator was 
based on a typical system design, employing the types of BIT under investigation. The BIT fault 
reports were used to develop, train, and evaluate the selected neural networks Finally, a Life 
Cycle Cost (LCC) impact study was conducted to assess the cost/benefit tradeoffs of neural 
network technology insertion at the platform, equipment, and logistics system levels. 

The deliverables of the contract were: 

• Monthly R&D Status Reports 
• Software Design Document (2167A) 
• Software User's Manual (2167A) 
• Quarterly Contract Funds Status Reports 
• R&D Test and Acceptance Plan (Demo Plan) 
• Software 
• Final Report 

Report Organization and Content 

This report is divided into two volumes. Volume I contains the main body of the report, and 
documents the conduct of the NNFAF project. It is organized to follow the sequence of tasks 
which were performed on the contract It is divided into major sections which describe each of the 
major tasks. Appendices are used to contain exemplary or backup data which is too large or too 
detailed to be included in the main body of the report. Volume II contains the largest of the 
appendices. It may be omitted when reading the report without detracting from its overall 
comprehension. 

The following table summarizes the report content. 
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Volume Number Section Name Description 
Volume I 1. Introduction Provides background, objective of effort, 

report content 
2. State-of-the-Art Assessment Describes the state-of-the-art assessment 

task for BIT and neural network 
technologies 

3. Down Selection Process Describes the structured method of 
selecting demonstration approaches via 
three down selections 

4. Target System Describes the basis for fault modeling and 
BIT simulation 

5. Development Methodology Describes  the software development 
methodology and the neural network 
development methodology, including 
software tools, neural network models, 
neural network input data generation, and 
neural network training and testing 

6. Neural Network Results Presents the results for each of the four 
neural networks and analyzes network 
performance 

7. Impact Study Describes the conduct and results of the 
impact study 

8. Demonstration Describes the plans for and the conduct of 
the acceptance test and software 
demonstration 

9. Conclusions Presents conclusions regarding the overall 
outcome of the work 

10. Lessons Learned Identifies major lessons learned on the 
project 

11. Recommendations for 
Future Work 

Proposes ideas for future work in the 
general problem domain 

Appendices BIT and neural network bibliographies, 
literature abstracts, and definitions of 
terms, examples of simulated BIT fault 
signatures, simulated fault report causes, 
and neural network input data files, 

Volume II Appendices BIT and neural network tutorials on the 
BIT techniques, fault report causes, and 
neural network models investigated in this 
effort 



1. INTRODUCTION 

1.1 Background 

Research in the domains of neural networks and Built-in Test (BIT) has ^ghted a need to 
examineTthe potential of the neural network technology to the solutioni of ong-standingBIT 
Drobkms such a false alarms and intermittent failures. Characteristics of the BIT problem domain 
£du£to*Se data, temporal reasoning, pattern matching, the need to adapt to changes in 
the dam inTut S the importance of remembering history (the conditions under which a.failure o 
non failure occurred in the past). Certain neural network models also exhibit sim ar 
SSÄTNSJ networkWnology has reached a sufficient ^«°^*£»^ 
such that it can be studied for its applicability to real world problems. The NNFAF pro ect was 
contracted to investigate that applicability with respect to its potential for improving BIT 
performance. 

1.2 Objective 

Rome Laboratory has sponsored research into the development of AI-based techniques for 
fmpraving the performance of BIT. The Smart BIT program used neural network technology as 
oTofts approaches. Other neural network technologies needed to be investigated.to identify 
additional promising approaches for BIT false alarm filtering. The objective of this effort was to 
"dentify refine, and develop such techniques and demonstrate their concepts. In addition an 
objective was to make recommendations for the implementation of these techniques into fielded 
systems. The approaches were investigated for application to v™™™™^™*"*3** 
those associated with the test, diagnosis and condmon monitoring of a MILSATCOM system. 

1.3 Approach 

A vast amount of information needed to be applied to the neural network false alarm filtering 
proiect including: system knowledge, logistic knowledge, knowledge of BIT techniques, false 
Ei failure methods, knowledge about neural network (NN) architectures characteristics and 
tools. This knowledge was an input to a state-of-the-art assessment of NN and BIT Ihe 
assessment generated a three-dimensional matrix of possible approaches to applying NN to Bli 
while considering fault report causes. This matrix or cube is shown in Figure 1.3-1. 

A methodology based on successive down selections guaranteed that maximum effort was 
expended on the most promising approaches, but that all approaches received some attention. 
Parallel with the first down selection, the target system and methodology were finalized The 
recommended target system was a MILSTAR like system with a hierarchy of NN/BIT structures. 
After selection of the target system, the final down selections of candidate approaches were made, 
eliminating any methods that could not be effectively demonstrated using the target system. 

The demonstration methodology was selected, as well as the platform/tool combination of the 
demonstration, and the "look and feel" of the machine-interface Demonstration cntena and 
expected results were established. Drafts of the Software Design Document, the R&D Test and 
Acceptance Plan, and the Software User's Manual were generated at this time. The implications ot 
the selected approaches to the target system were assessed, including integrated logistics support, 
life-cycle costs and host hardware and software. 
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Figure 1.3-1.    Application Approaches 

The results of the down selections, coupled with the selection of the target system, allowed us to 
design, code and test the demonstration system. The appropriate NNs were trained with system 
data augmented to include environmental data. The system was demonstrated at Rome Laboratory, 
with a presentation of the expected paybacks of applying NN to BIT. Our efforts were 
documented in a final report. 

Figure 1.3-2 graphically depicts the selection process. Subsequent sections provide more detail to 
many, of the processes in the diagram. 
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Figure 1.3-2.    Overview of Approach Method 



1.4 Report Organization 

This report consists of an Executive Summary and Introduction, followed by descriptions of each 
of the major phases of the project and information relevant to each phase. The major phases are: 

• State-of-the-Art Assessment 
• Down Selection of Final Approaches 
• Identification of Target System and BIT Simulation Mechanism 
• Neural Network / Software Development 
• Results Analysis / Impact Study 
• Final Demonstration 

2. STATE-OF-THE-ART ASSESSMENT 

2.1   Built-in-Test 

2.1.1   Overview/Conclusions 

A study of the state-of-the-art in the area of Built-in Test (BIT) was performed. Literature was 
reviewed that contained material on new BIT techniques, BIT false alarm filtering techniques, BIT 
false alarm determination, and new BIT maintenance philosophies. The literature was selected by 
performing a literature search of all current journals, articles, reports, and books in recent years 
which contained key words. Abstracts of the literature matching the key words (such as false 
alarm) were gathered, and copies of the relevant articles were collected and reviewed by the 
NNFAF researchers. All of the articles reviewed in the BIT state-of-the-art literature search are 
included in the BIT Bibliography and Literature Abstracts in Appendix A. 

Many interesting methods have been proposed to analyze false alarms based on mathematical or 
probabilistic models where found during the literaturefsearch. The crucial items in such models are 
the definitions of a false alarm, intermittent failure, hard.failure, and a functional system. The 
distinctions between these terms affect the design of any neural network filtering techniques. 

We have defined these terms as follows: 

1. False Alarm: A False Alarm is an incorrect report to the operator that a maintenance or repair 
action is necessary when no action should be taken. 

2. Intermittent Failure: An Intermittent failure is a fault which results in a failure that occurs 
repeatedly over time. Intermittent failures can occur at regular intervals or randomly. 

3. Hard failure: A hard failure is the inability of an item to perform its specified function, which 
results in the inability of the system to perform its specified function. 

4. Functional system: A Functional System is a system which performs to its specified 
requirements. 

Other standard BIT-related terms and definitions are listed in Appendix B. 

Literature describing the relationship between false alarm causes and their impact on BrT routines 
and reports was not found. Previous research in the areas of false alarms and filtering techniques 



has developed both simplistic and sophisticated models of false alarms causes. However, these 
models were developed based on assumption and "experts' opinions". They were never validated 
(it may not be possible to do so). The problem of modeling false alarm signatures was recognized 
during the NNFAF project. Even if accurate false alarm signatures did exist for one system, these 
signatures might be dependent on the specific system or operational environment. Therefore, it 
was agreed that false alarms can manifest themselves in many possible signatures, depending on 
the system and the application. As a result, the NNFAF focus on false alarm and intermittent 
failure signatures is on distinguishing one from the other and not on signature definition. 

The state-of-the-art assessment was considered an evolving process which continued throughout 
the entire contract period of performance. As new entries were encountered, the bibliography and 
abstracts were updated, so that the final BIT Bibliography and BIT Literature Abstracts in 
Appendices A and B represent the current state-of-the-art of BIT technology. 

2.2 Neural Networks 

2.2.1   Overview/Conclusions 

A study of the state-of-the-art in the neural networks domain was performed. The purpose of this 
state-of-the-art assessment was to "identify, define and rank those (neural network) techniques 
which have application potential for improving the performance of BIT." Literature was reviewed 
that contained material on neural networks research areas, theory, applications, architectures, and 
modeling techniques. The literature was selected by performing a literature search of current 
journals, articles, reports, and books, as well as by contacting prominent neural network 
researchers directly. Keywords were used to direct the literature search. Copies of the relevant 
literature were obtained, read, reviewed, and annotated. The result of this effort was an extensive 
neural network bibliography (initially 41 entries), accompanied by abstracts which summarized 
each entry and noted its relevance to the contract effort. 

The neural network review and assessment confirmed our neural network knowledge. A set of 22 
neural network models was compiled, which represented the current state-of-the-art in the domain. 
No new network models were discovered. Also as part of the assessment, a neural network 
characterization matrix was developed, which presented each of the neural network models, sorted 
by major features or characteristics. This characterization matrix was prepared for use during the 
down selection process (selecting candidate approaches for demonstration). In addition, a 
collection of relevant definitions of terms was compiled, including brief descriptions of each of the 
network models. 

The state-of-the-art assessment was considered an evolving process which continued throughout 
the entire contract period of performance. As new entries were encountered, the bibliography and 
abstracts were updated, so that the final Neural Network Bibliography and Literature Abstracts in 
Appendix C represent the current state-of-the-art of neural network technology. 

Appendix D contains neural network definitions which were compiled during the neural network 
state-of-the-art assessment. 

3. DOWN SELECTION PROCESS 

The first down selection used practicality as a down-selection criteria. The initial Cartesian cube 
had almost 40,000 entries. In analyzing these approaches, we eliminated all methods that were 
grossly infeasible. In addition, we sought equivalent classes within the cube, such that selecting 



any member in the equivalent class would adequately demonstrate the benefits ^ *e jproach 
within the class. Consequently only one member of an equivalent class would be selected. Using 
these rules we selected slightly over 500 approaches to consider further. 

Results of the first down selection were reviewed with the customer. A rich space of approaches 
was still available and a second down selection was required. In the second down selection, an 
mitial qualitative screening was made for system characteristics We qualitatively rank ordered the 
remaining approaches and noticed that some of the highest ranked approaches were very sirmlar 
We selected the top 30 "different" approaches that demonstrated significant payback. A third down 
selection used quantitative characteristics and target-specific information. Any approach that could 
not demonstrate system payback was eliminated. 

3.1 Down Selection 1 

This section describes the process for the first demonstration candidate down selection. 

3.1.1 Initial Matrix 

At the start of the first down selection, thorough lists of BIT techniques, fault report causes, and 
neural network models were compiled, to identify the members in each dimension of the Cartesian 
cube of possible demonstration candidates. 

3.1.1.1   BIT 

A list of BIT techniques was generated. This list includes all current types of BIT techniques. 
Each technique is defined below. 

Parity Check An extra bit (parity bit) is added to data being stored or transferred. This bit is set to 
avaluethat, when added to the data bits, will always add to an odd or even number for 0dd or 
even parity respectively. When data is received of read that contains parity, all bits are added and 
the sum is used to verify correct parity. 

Fx^.nHp/i Parity Check. This technique is the same as parity check above, but uses multiple parity 
bits. It is more accurate than using only one bit of parity. 

T.nnfitnr1ina1/Vertip.al Redundant Cher\c n.RC/VRO. An LRC/VRC check is similar to 
performing parity on a group of data being transferred or stored. An LRC bit is the same as a 
simple parity check. An LRC bit is added to each data word. A VRC word is added to the group 
of data words Each bit in the VRC word serves as parity for that bit location for the group of 
words Therefore, when bit 1 of the VRC is added to bit 1 of each word, the sum will be even or 
odd, depending on the defined VRC parity. The error rate is reduced 2 to 4 orders of magnitude 
when both LRC and VRC are used together. 

Cyclic Redundancy Check (CRC). A CRC is usually performed on stored data but can be used on 
data being transferred. A word is generated and added to a group of words. When the group of 
words is divided by this additional word there is no remainder. This is a very accurate test. 

Watchdog Timer. A device monitors a function, usually a processor. It checks for activity within 
a defined period of time. If no activity exists within the specified time, then a failure signal is 
generated. This signal can be monitored by another processor and reset to check for activity again. 



Activity Detector. A device monitors one or several signals. It is monitored and reset externally. 
Once the device (activity detector) is reset, then any high to low or low to high transition (defined 
by implementation) will set the device output to an active state. This state is monitored by a 
processing function and reset. The active state verifies activity. 

Detect Coolant Pressure Loss. This represents a mechanical switch that is triggered when a failure 
state exists. The signal is monitored by a processing function. Once the failure state is inactive 
(regained pressure), then the signal will report a functional state. This technique is used to 
represent any similar type of technique that uses mechanical switches. 

Signal Monitor. A characteristic of a signal is checked and verified within a defined time period. 
This is similar to an activity detector, but the characteristic being verified can be more elaborate 
than a transition. Examples of what may be verified are a certain number of transitions or the 
length of time that the signal is in a high state. 

Checksum. Logical Or. An additional word is added to a group of words, usually in a memory 
bank. When this word is logically ored to every data word in the memory device or bank then the 
sum will equal all logical ones or zeros. 

Checksum. Arithmetic Addition. An additional word is added to a group of words, usually in a 
memory bank. The additional word is set equal to the arithmetic sum of all data words in the 
memory device or bank. An addition is performed on the memory bank and the results are verified 
against the checksum word. This test can use just one checksum word for the sum. However, it 
is more accurate if two words are used to maintain carry bit history during the addition. 

Walking Ones. This is a test performed on a Random Access Memory (RAM) device or bank. A 
word is written to each memory location starting with all zeros and a one in the least significant bit 
for the first memory location. The one is moved over to the next higher bit and replaced by a zero 
for each subsequent location. The result appear as all zeros being written to every location with a 
one moving across the group of locations. 

Six Pass Modulo 3- Six write patterns of three data words are written and read to a RAM device or 
bank. The patterns that are written to the RAM devices are as follows: 

PASS 1 100100100100...       Address 0 
010010010010...       Address 1 
001001001001...       Address 2 
100100100100...       Address 3 

(address 4 to the last address continue this sequence of 3 patterns) 

PASS 2 010010010010... Address 0 
001001001001... Address 1 
100100100100... Address 2 
010010010010... Address 3 

PASS 3 001001001001... Address 0 
100100100100... Address 1 
010010010010... Address 2 
001001001001... Address 3 



PASS 4 - 6     These passes are the inverse of PASS 1 - 3. 

Small Block Write/Read Tests. This test is performed on portions of RAM devices. Alternating 
zeros and ones (hexadecimal A) and alternating ones and zeros (hexadecimal 5) are written to a 
block of RAM device locations and verified. This is repeated on each pass for a new block in the 
RAM. 

Boundary Scan. Boundary scan devices are designed with a special port that allows every 
functional pinto be placed in a boundary scan test mode. Every I/O of each boundary scan device 
can be controlled and monitored using the boundary scan port. The boundary scan port is serial 
with boundary scan devices linked in a large serial chain. Boundary scan tests are performed by 
serially shifting instructions and data to boundary scan devices on the boundary scan port. The 
instructions are executed and the results are serially shifted out the boundary scan port and verified. 

Bnilt-in Logic Block Observer (BILBOV A BILBO device or circuit is placed at the inputs and one 
at the outputs of the circuit under test (CUT). These devices pass input and output data to and 
from the CUT during normal operation. Each BILBO device can be externally controlled to 
initialize a seed at the input and output BILBO devices. The input device can function as a pseudo- 
random number generator and replace the normal inputs with random data. The output BILBO 
device can operate as a signature analyzer. After a predefined time the signature from the output 
BILBO device can be shifted out for verification against a known good signature. 

Crosscheck This is a technique that enables logic devices within a VLSI component to be 
monitored by crosscheck circuitry within the VLSI. When used with boundary scan (to access 
data), crosscheck can be used to sample data within a VLSI. This data can be verified against 
known good data. 

Set Scan Design. Registers within a device act as normal registers during functional operation. 
However, they are configured as a serial shift register with external control in test mode. 
Therefore, data can be serially shifted into all registers within a device, applied to the device as in 
normal operation and sampled at the registers, and then serially shifted out for comparison against 
known good data. 

Set Scan Shadow Register. Very similar to Set Scan design; however, the shift registers do not 
have to be normal operational registers. These registers can be external to the functional circuit, 
with the ability to sample data within the circuit. The test would be the same, except that these 
registers can be used to sample data without affecting normal operation. 

Test Channel. Known test data is sent down an operational port or processing path during unused 
operational time. In other words, test data is time multiplexed with normal operational data. 

Processor Functional BIT Routines. Functional BIT routines that are controlled by a processor are 
periodically performed during normal processing. 

I^oopback. Known test data is sent out a data path or port and is looped back on the same port or 
another path or port for verification. This routine is periodically performed when the data path or 
port is not in use. 

Signature Analysis. A routine is initiated that causes a sequence of data to be generated by the 
circuit under test. This data is sampled and is compressed to generate a signature. The signature is 



verified against a known good signature after the data sequence is complete. There are several 
methods of compressing the data. The most popular is to use a Linear Feedback Shift Register 
(LFSR). 

Off-Line BIT. BIT routines are perform one at a time while the system is not in operation. Off- 
line BIT is performed during power up and as a special routine. 

Residue Code. Data being stored or transmitted is reformatted in a code. When the data is read or 
received, it is decoded. If an error occurred then the decoding will detect the failure. 

Viterbi Code. Similar to residue coding; however, the Viterbi code has the ability to fix erroneous 
bits. The coding sequence is sophisticated and is dependent on current data words read or 
transmitted as well as previous data. 

Syndrome Code. A coding scheme similar to residue coding. 

Transition Count. Monitor circuits sample signals and count the number of transitions. These 
circuits are sampled at a regular period and reset. If the number of transitions goes below a 
threshold, then an error is reported. 

Analog Voltage Measurement. An analog voltage is measured and compared to a known 
threshold. If the measurement exceeds the threshold, then an error is reported. 

Digital Signal Comparison, A digital word representing some magnitude is compared against a 
known threshold. If the threshold is exceeded, then an error is reported. 

Power Level Detectors. An analog power level (usually an IF or RF signal) is measured and 
compared to a known threshold. If the measurement exceeds the threshold, then an error is 
reported. 

Redundancy. A circuit is duplicated several times. Each redundant circuit receives the same 
inputs. A voting circuit is used to sample the redundant circuit outputs and send the output data 
that was produced by the most redundant circuits. If one redundant circuit generates data that 
doesn't agree with the others, then it will be ignored and the failure will not be introduced to the 
operational data path. 

Ratio Detection, Two signals are monitored. The ratio of one signal to the other is calculated and 
compared to a known threshold. If the threshold is exceeded, then a failure is reported. 

Statistical Threshold- A sample measurement of a portion of a circuit is performed. The statistical 
likelihood of the remainder of the circuit being within a defined threshold is calculated. If it is 
determined that the threshold is likely to be exceeded, then a failure is reported. 

Several new BIT techniques were discovered during the state-of-the-art literature search. These 
techniques are HIT-Compress, HIT-Identical, and D-Latch Concurrent. All of these techniques 
involve circuitry that performs concurrent comparisons on functional circuitry. A brief description 
of each follows. 

BIT-Compress: In this technique, a test generator circuit is used to produce a test signal that is 
compared to the normal inputs of a combinatorial circuit under test (CUT). When they are 
equivalent, a "HIT" signal is generated.   The HIT signal is sent to a response verifier which 



compresses the CUT'S outputs and advances the test generator to the next signal. The signature 
within the response verifier is validated after a HIT occurs on the last test generator signal. 

HTT-Tdentical: This technique is applied to identical combinatorial circuits such as VLSI modules. 
The input of several identical circuits is compared. When all inputs are the same then a "HIT" is 
generated The HIT signal is sent to a circuit that compares the outputs of each identical circuit. A 
failure exists if the outputs are not equivalent. 

D-Latch: Several techniques for testing D-latches were found. The most interesting technique is 
the addition of a parity tree to a D-latch bank. Parity is calculated for inputs to the D-latch bank. 
The parity result is stored for one clock cycle. Parity is determined for the D-latch outputs and 
compared to the input parity during the next clock cycle. 

This list was sorted by the type of signature reported by the BIT technique, as well as the 
functional circuitry involved in the BIT technique. The BIT techniques were divided this way 
because only the BIT signature (report) and the effects of the false alarm cause on the signature can 
be used to analyze failures. The BIT technique tree is shown in Figure 3.1.1.1-1. 
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The highest level of the BIT signature was broken down by the type of information reported. A 
BIT report is typically a pass/fail status but it can include more information, or it can be a 
threshold, referred to as a threshold/feedback BIT technique. The pass/fail signatures were divided 
by the frequency of the BIT report. The functionality of different pass/fail report BIT techniques 
was divided. The threshold/feedback BIT techniques were divided into enhanced information and 



threshold/feedback adjustment reports. Each of the threshold/feedback divisions was further 
divided by functionality. 

The threshold/feedback BIT techniques are new techniques that were proposed during this project. 
A typical BIT technique will report a pass or fail status. A threshold/feedback BIT technique report 
contains information that can be used by a processing function to determine the status of the BIT 
report. Since the processing function interprets the BIT report, it can possibly adjust the calculated 
BIT status based on history. It also has the potential to feed back information to the circuitry 
performing the BIT technique. 

3.1.1.2 Fault Report Causes 

A list of causes of fault reports was generated with a primary focus on false alarm causes. This list 
includes all items that could potentially affect the functionality of a system. They can either cause 
the system to appear to have a failure when it doesn't, to have an intermittent failure, or to have a 
hard failure. Brief definitions of fault report causes are given below. 

Instantaneous One-Time Fault. Alpha Particles. This fault occurs in memory cells due to an alpha 
particle modifying the data within the memory cell. This false alarm is not common in ground 
based systems since many alpha particles do not exist within the earth's atmosphere. This situation 
is considered a false alarm because the hardware is fully functional; only a data bit was lost due to 
an outside influence. 

Instantaneous One-Time Fault. Electro-Magnetic Interference (EMI) / Radio Frequency 
Interference CRFI). Hardware or data transmission is disturbed by EMI or RFT only for an instant 
of time. Note that in order for this to be a false alarm, the EMI/RFI must not be within the 
system's operating specification. 

Shock/Vibration. The shaking of a system due to shock or vibration can cause connector contacts 
to temporarily disconnect. It can also cause crystal oscillators to fail. These circumstances may be 
due to turbulence, missile hits, or other external influences. 

GLoad. Extra force exerted on a system may cause connectors to temporarily become open. This 
situation could result from strategic maneuvers. 

EMI/RFI. EMI/RFI can be caused by many external sources. Some examples are radars, 
jammers, and other systems within the platform, such as power transformers. 

Platform Power. The power supply feeding a system can be affected by other systems using the 
same supply. As a result, the power may not be stable at certain instances, causing BIT routines to 
fail. However, the system may still be functional since the cause is external, unless it is specified 
that the system must function within the power fluctuation. 

External Radiation. Radiation induced by an external source may disrupt signals or component 
operation. This radiation may be due to radar signals traveling through the system. 

Temperature. Both failures and false alarms due to temperature are common. A fault report due to 
temperature can only be classified as a failure or false alarm if the temperature is known to be in or 
out of the specified operating conditions. 
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fWnnent Drift. Component performance can drift or vary with age This can cause the system 
to not meet its specified operation and will always be classified as a failure. 

PTTTWwam Failure. BIT hardware can fail just as easily as functional hardware. Since the BIT 
hardware is a pan of the system, any BIT hardware failure is considered a system failure. 

ComDonentHaraL_Eaikr£. A component has the potential to have a hard failure where it 
conTStly fails to work Component hard failures could result in intermittent as well as hard 
system failures depending on the application of the component. 

Timing Margins. Timing margins for tests could be incorrectly defined and result in failure 
reports  These failures are real system failures because of a BIT design error. 

TUT Thresholds. Similar to timing margin errors, BIT threshold errors are caused by incorrect 
values defined as thresholds during the BIT design. These failures are real system failures. 

Firmware/Software Bugs. Some failures may be due to firmware/software design errors. These 
SrSSdcauSTBIT routines to fail when hardware is functional. Even though the functional 
hardware may work, these errors are real system errors since the system cannot meet its design. 

Sftlf-Tnterference. This occurs when part of a system interferes with another part   For example 
reflections from an antenna transmitter could cause antenna pointing electronics to be disrupted by 
RFI. 

Hardware Stress. Hardware stress due to temperature, G 10^^°^*^^°^,^ 
tolerance! and EMI/RFI may cause components to operate out-of-specification. The result may 
induce system failures. 

Test Tolerances. Some false alarms may be due to test tolerance failures due to variations in the 
system over time. The system may be fully functional and the BIT system may work correctly at 
first. -However, the system behavior may change with time but still be functional. 

False alarm causes can only be seen by their effect on a BIT technique signature (report). The fault 
report tree is shown in Figure 3.1.1.2-1. It has three fault report categones: false alarm causes, 
intermittent failure causes, and continuous hard failure causes. 

All three fault report categories were used to define the difference between a BIT technique 
signature due to a false alarm cause, an intermittent failure cause, and hard failure cause, halse 
alarm causes were divided into frequency of occurrence. Intermittent failures were divided into 
primary cause differences and then into frequency-related groups. 
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Figure 3.1.1.2-1.    Fault Report Cause Taxonomy 

3.1.1.3   Neural   Networks 

Neural network models and their characteristics are discussed in the following sections. 

3.1.1.3.1  Neural   Network  Models 

This section presents the neural network models which were selected as possible demonstration 
candidates based on information gained from the state-of-the-art survey. Each model is listed 
along with a brief descriptive summary. 

1. ADALINE (ADaptive Linear NEuron, Widrow, 1959): A member of a family of trainable 
pattern-classifiers which distinguishes between patterns on the basis of linear discriminate 
functions. It can only classify linearly separable problems. The ADALINE was one of the first 
attempts to model biological learning. 

2. ART-1 (Adaptive Resonance Theory 1, Grossbery, 1976): An unsupervised neural network 
model used in pattern classification. The network discovers pattern classifications on its own, in 
real time. It forms categories for input data, with the granularity of the categories determined by a 
vigilance parameter. The learning method is based on the assumption that inputs which share a 
greater number of features should fall into the same category. ART-1 was designed to classify 
binary input patterns. 
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3 ART-2 (Adaptive Resonance Theory 2, Grossberg and Carpenter, 1987): ART-2 is similar to 
ART-1 except that it was designed to classify analog inputs. 

4 R^lmrnnagation (Parker/Rumelhart, 1985/1986): A learning algorithm for updatingweights in 
mSSward network that minimizes mean squared mapping error (error^be ween the 

Sned output of the network and the actual output). It distributes the responsibility for he 
ou put error across all elements and connections by propagating it backward through the 
connections to the previous layer, and repeating until the input layer is reached. This is one of the 
most utilized network models. 

5 BED: (Backpropagation Through Time, Rumelhart, Hinton & Williams, 1986): An extension 
of thebackpropagation learning method which can be used with problems that involve system 
dynamSSSThe output error is propagated back through the time path in this model 
sLce the propagation progresses backwards, the model requires a memory of previous time 
periods. 

6 BAM (Bidirectional Associative Memory, Kosko, 1987): An associative memory is a memory 
(a rSrwork) which allows the retrieval of information by presentation of inexact or incomplete 
"memory keys " This network is tolerant of partial or partially erroneous (noisy) information. It is 
also called content-addressable. The BAM is an example of this type of network. 

7 Rnltzmann Machine (Acklev, Hinton & Sejnowski, 1985): A supervised learning algorithm in 
which neTwork states are determined by "simulated annealing." This type of network uses a noise 
process to find the global minimum of a cost function. 

8 r^r.xfo Correlation (Fahlman, 1990): This is a type of supervised learning, multilayer 
network in which new hidden nodes are added one at a time. Its purpose is to predict the current 
remaining output error in the network and reduce it by creating the new hidden node. First the 
new hidden node is correlated with the current network error, and then the new node is added to 
the network to form a cascade. 

9 CCN (Compound Classifier Network, 1989): This is a network which classifies inputs against 
templates by a nearest neighbor algorithm. It utilizes dynamic hidden node allocation when an 
input is not sufficiently similar to an existing template. This model is similar to Nestor s Restricted 
Coulomb Energy (RCE) model. 

10 rnnnte.mronagation (Hecht-Nielsen, 1987): This is a nearest-neighbor classifier which selects 
from a set of exemplars (templates) by allowing them to compete against each other and selecting 
one winner. The winner is then decoded into a classification. 

11 Hamming Network (Lippmann, 1987): This network implements a minimum error pattern 
classifier for binary vectors, where the error is defined using the Hamming distance. It is also 
called the unary model. 

12 Hnnfield Network (Hopfield, 1982): This is a fully-connected, feedback network which uses 
unsupervised learning as a pattern classifier. It can also be used to solve combinatorial 
optimization problems such as the Traveling Salesman Problem. It is also called the Cross-bar 
Associative Network. 

13 Kohonen SOM (Self-Organizing Map, Kohonen, 1979-1982): This is an unsupervised model 
used for optimization and pattern classification. It does not require explicit training of input-output 
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correlations but "spontaneously self-organizes." It is used to visualize topologies and hierarchical 
structures of higher-dimensional input spaces. 

14. LVO (Learning Vector Quantization, Kohonen, 1988): This network assigns vectors to 
classes. It uses a Kohonen (SOM) layer to learn and perform the classification. 

15. MADALINE (Multiple ADALINE, Widrow, 1960): This is a network of ADALINES 
cascaded together so that non-linearly separable problems may be addressed. It is also one of the 
older and potentially more restrictive models. 

!6. Sinele-Laver Perceptron (Rosenblatt, 1957): This is a trainable pattern classifier which 
classifies using linear discriminate functions. It is one of the original neural network models. Its 
goal was to model the pattern recognition capability of the visual system. It is very similar to the 
ADALINE. Its major weakness is that it cannot be used for non-linearly separable problems. 

17. PNN (Probabilistic Neural Network, 1988): This is a neural network implementation of the 
Bayesian classifier statistical method. The PNN uses training data to develop distribution 
functions that are used to estimate the likelihood of a feature (input) being within a category (class). 

18. Recirculation (Hinton & McClelland, 1988): This is an alternative to a backpropagation 
network in which errors are passed backwards through the feedforward connections. In this 
model, data is processed only in one direction, and connections are both forward and back. It uses 
the same learning rule as backpropagation; the connections are separated to facilitate 
implementation in hardware. 

19. REINFORCE (Williams, 1987): This is a class of gradient-estimating algorithms for 
reinforcement learning. Reinforcement learning requires a reinforcement signal as training 
feedback (as compared to a desired output). It is an on-line learning method which can learn 
temporal behavior. This is one of the newer and more experimental models in the group. 

20. RJRL_(Real-Time Recurrent Learning, Williams & Zipser, 1989): This is a newer, more 
theoretical model which is recurrent and can deal with time-varying input or output. 

J1- Spatio-Temporal Pattern Recognition (Hecht-Nielsen, 1986): This model is a classifier used 
for recognizing sequences of events over time. It can be used for recognizing repetition for 
example, repeating signals. It is also called the Kurogi model. 

22- Jgrrippral Difference (Sutton, 1988): A class of incremental learning procedures which are 
specialized for prediction (using past experience with an incompletely known system to predict its 
future behavior). This method assigns credit for error by means of the difference between 
temporally successive predictions. Learning occurs when there is a change in prediction over time. 

3.1.1.3.2  Neural  Network  Characteristics 

During the state-of-the-art assessment, a set of neural network characteristics were identified and 
defined, as a basis for comparison of the different models and to provide a framework for 
analyzing their potential contribution within the problem framework. These characteristics and 
their definitions are given in Tables 3.1.1.3.2-1 and 3.1.1.3.2-2. The characteristics were then 
applied to the neural network models, as shown in the matrix of Table 3.1.1.3.2-3. This work 
was done in preparation for the down selection process. 
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Table 3.1.1.3.2-1.    Categories of Neural Network Characteristics 

CATEUÖRV 

COMPLEXITY 

CONNECTIVITY 

LEARNING 

TEMPORALITY 

LAYERING 

STORAGE REQTS 

COMPUTATIONAL REQTS 

TRAINING TIME REQTS 

INPUT / OUTPUT VALUES 

WEIGHTS 

criAkACTUKismc 
Age, Application, Separability 

Feedforward, Feedback (Recurrent) 

Supervised, Unsupervised, On-Line 

With, Without 

Single, Multiple, Hidden 

Extremes (High, Low) 

Extremes (High) 

Extremes (Fast, Slow) 

Binary, Any 

Fixed, Adjustable 
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Table 3.1.1.3.2-2.  Definitions of Neural  Network Characteristics 

CHARACTERISTIC DESCRIPTION 
AGE The age of the neural network model could be an indication of its limitations, 

its degree of usefulness, or its stability. Older models may be incapable of 
solving complex problems; newer models may still be experimental and 
unproven in real world applications. 

TYPE OF PROBLEM Different neural networks are typically applied to different types of problems. 
The problem types fall into the following general categories: Association, 
Classification, Prediction, and Optimization. 

FEEDFORWARD NETWORK This is a network in which all the connections are from lower to higher layers 
and there are no feedback connections from one layer to another or from one 
layer to itself. 

FEEDBACK NETWORK This is a network in which some of the connections feed backwards through 
the network. Sometimes feedback is used to create time-sensitivity. 

SUPERVISED LEARNING In supervised learning, the system is trained to respond to a given input with a 
corresponding output by showing it the expected output. 

UNSUPERVISED LEARNING In unsupervised learning, the system receives only input stimuli. The network 
iteratively reorganizes itself so that each processing element responds strongly 
to a different set of input stimuli, forming clusters in the input space which 
may correspond to distinct real world concepts. 

ON-LINE LEARNING In on-line learning, the network can adapt (learn new solutions) in real-time. 
Other networks must be taken off-line and retrained if new (previously unseen) 
inputs are encountered. 

TEMPORALITY The capability of a network to deal with time-varying data, or recognize 
sequences of events over time. 

LAYERING This characteristic involves the hierarchical architecture of the network; 
networks which cannot utilize hidden or intermediate layers are typically 
restricted to solving linearly separable problems. 

SEPARABILITY/ MAPPING The issue of linear vs. non-linear separability is related to the issue of how a 
network's inputs are mapped to its outputs. A linear mapping is the most 
restrictive; an arbitrary mapping can represent more complex problem 
solutions. 

LARGE STORAGE REQTS Certain networks require extremely large memory resources, usually due either 
to dynamic storage allocation or a requirement for saving temporal history. 

SMALL STORAGE REOTS Certain networks require extremely small memory resources. 
LARGE COMPUTATIONAL 
REQTS 

Certain networks require extremely large computational resources, especially 
during the training phase. 

SLOW TRAINING TIME Slow training time means that the network must see an extremely large 
number of training data before it converges on a solution. 

FAST TRAINING TIME Fast training time means that the network does not require many presentations 
of data before it converges on a solution. 

TYPE OF INPUT REQUIRED Some networks are restricted to binary input; some may receive binary or 
continuous values. 

TYPE OF OUTPUT 
REQUIRED 

Some networks are restricted to binary outputs; some may output binary or 
continuous values. 

FIXED WEIGHTS Most networks learn by adjusting connection weights iteratively over some 
period of training time. However, there are a few network models in which the 
connection weights are not adjustable after they have been initialized. This 
prevents iterative learning, or generalization. 
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Table 3.1.1.3.2-3.    Neural Network Characteristics Matrix 

NETWORK 
MODEL 

Year 
Intro- 
duced 

Problem 
Type 

Feed- 
fwd 

Feed- 
back/ 

Recurrent 
Super 
vised 

Un- 
super 
vised 

Binar> 
Input 
Regd 

Tempo 
rality 

No 
Hidden 
Layers 

ADALINE 1960 Classification X X X X 

ART1 1976 Classification X X X 

ART 2 1987 Classification X X 

Backprop 1986 Classification X X 

BPTT & Deriv. 1990 Classification X X X 

BAM 1987 Association X X X X 

Boltzmann 1985 Assoc / Opt X X 

Cascade Corr. 1990 Classification X X X 

CCN 1989 Classification X X 

Counterprop. 1987 Classification X X 

Hamming 1987 Classification X X X 

Hopfield 1982 Class / Opt X X X 

Kohonen SOM 1979 Class / Opt X X X 

LVQ' 1988 Classification X X 

MADALINE 1960 Classification X X X 

Perceptron 
SLP 

1957 Classification X X X 

PNN 1988 Class/ 
Predict 

X X 

Recirculation 1988 Classification X X 

REINFORCE 1987 Theoretical X X X 

RTRL 1989 Theoretical X X X 

SPR 1986 Classification X X X 

Temporal Diff. 1988 Theoretical X X X 
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Table 3.1.1.3.2-3.    Neural Network Characteristics Matrix (continued) 

NETWORK 
MODEL 

Linear 
Map- 
ping 

Large 
Storage 
Reqts 

Small 
Storage 
Reqts 

Large 
Comp 
Reqts 

Slow 
Train 
Time 

Fast 
Train 
Time 

On-Line 
Learning 

Binary 
Output 
Reqd 

Fixed 
Weight 

ADALINE X X 

ART1 X X X 

ART 2 X X X 

Backprop X X 

BPTT & Deriv. X X X 

BAM 

Boltzmann X X 

Cascade Corr. X 

CCN X X X 

Counterprop. 

Hamming X 
Hopfield 

Kohonen SOM 

LVQ 

MADALINE X X 
Perceptron SLP X 

PNN X X 
Recirculation X 
REINFORCE X 
RTRL X X 
SPR X 
Temporal Diff. X 

3.1.2 Down Selection 1  Process 

The purpose of the first down selection was to reduce the size of the solution space by one or two 
orders of magnitude. Since the initial solution space was so large, the first down selection was 
conducted iteratively. First, each dimension of the Cartesian cube was examined independently for 
commonality and/or infeasibility. This task is referred to as the one-dimensional down selection 
and was done for BIT Techniques, Fault Report Causes, and Neural Network Models. After the 
one-dimensional down selection, a two-dimensional down selection was conducted, to examine the 
BIT Technique/Fault Report Cause members for commonality and/or infeasibility. Lastly, a three- 
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dimensional down selection was conducted. During each iteration of the down selection, rules 
SSSSaS to describe the commonality or infeasibility which had been identified at that point 
in the process, and these rules were used to remove or combine members of the solution space. 

3.1.3 One-Dimensional Neural Network Rules 

The purpose of the one-dimensional neural network down selection process was to attempt to 
reduceT number of potential neural network models by reviewing them for both common** y 
Sd^feasibility, and then defining and applying commonality or infeasibility rules which would 
group together common models or eliminate inappropriate ones. The purpose of the commonality 
review was to reduce the neural network domain size by grouping models by some type of 
equivalence, such as an equivalent learning algorithm. The purpose of the mfeasibüity ireview was 
to reduce the domain sizeby eliminating any inappropriate models The models were examined by 
Sing the neural network characteristics matrix (Table 3.1.1.3.2-3) which had been developed 
during the state-of-the-art assessment task. 

The commonality review was conducted first, and it was determined that no commonality rules 
existed- the characteristics of the models were sufficiently unique that no equivalence could be 
identified at this time. The infeasibility review asked the question, "Are there any neural network 
models having capabilities which are technologically too restrictive, possibly obsolete/ ine 
following characteristics were identified as exhibiting restrictiveness: 

• Complexity: Linear Separability 
• Layering: Single Layer Architecture 
• Learning Weights: Fixed, Not Adjustable 

The Linear Separability characteristic is restrictive in that a model which can only solve linearly 
separable problems is not flexible enough to be applied to the false alarm problem Similarly, a 
network with a Single Layer Architecture which can only provide a linear mapping between input 
and output is also not sufficiently complex to solve this type of problem. Finally, models which 
do not allow adjustment of weights after they have been initialized can only learn very narrow 
problem solutions. 

The result of the one-dimensional neural network downselection was the formulation of two 
infeasibility rules, based on the identification of the restrictive characteristics described above. 

. One-Dimensional Infeasibility Rule 1: A neural network model is 
infeasible if it is restricted to linear mapping of input layer to output layer and does 
not allow indirect mapping through a hidden layer, providing no complex problem 
solving capability. 

• One-Dimensional Infeasibility Rule 2: A neural network model is 
infeasible if its weights cannot be adjusted after they have been initialized, 
providing no generalized learning capability. 

Upon application of these rules, the one-dimensional down selection process eliminated the 
following neural network models: 

• ADALINE by rule 1 and rule 2 
• MADALINE by rule 2 
• Single Layer Perceptron by rule 1 
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3.1.4 One-Dimensional BIT Rules 

The BIT techniques were analyzed for both commonality and infeasibility. A commonality rule 
was generated that groups BIT techniques together that will respond fault report causes with the 
same results or signatures. No infeasibility rules were found since each BIT technique is 
plausible. The commonality rule is as follows: 

• One-Dimensional BIT Commonality Rule: Two BIT techniques are 
considered common if the result or report of each looks the same, and any influences 
that may cause the techniques to fail are the same. In other words, the BIT failure 
signatures must be the same. BIT failure signatures include frequency of report and the 
type of status (pass/fail or threshold/feedback). 

This commonality rule was applied to the BIT technique tree, and resulted in the selection of 12 
common groups of BIT techniques. One representative BIT technique was chosen for each group. 
Because of commonality, all of the original BIT techniques are represented in the 12 common 
groups. The result of the one-dimensional BIT technique down selection is shown in Figure 
3.1.4-1. & 

One Dimensional 
BIT Techniques 
Down Selection 

Pass/Fail 
Status 

Continuous 

I hresholcf 
Measurement 
Feedback 

Slow Rate 
Continuous 

r 
Transmission 
Coding: Parity 
Check 

1 
Continuous 
Monitoring: 
Watchdog 
Timer 

Concurrent 
Comparison: 
HIT Identical 

Periodic Off-Line 
BIT 

Off-Line 
BIT 

Scan/Internal IC 
Tests: Boundary 
Scan 

Functional Tests: 
Processor 
Functional BIT 
Routine 

Readonly 
Memory (ROM) 
Testing: 
Arithmetic 
Checksum 

1 
Random Access 
Memory (RAM) 
Testing: Small Block 
Write/Read Tests 

hnhanced 
Information 

Threshold 
Feedback & 
Adjustments 

Error 
Correcting: 
Viterbi 

Transition 
Count 

Comparison: 
Analog Voltage 

Threshold: 
Ftatio 
Detection 

Figure 3.1.4-1.    One Dimensional BIT Technique Downselection Results 
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3.1.5 One-Dimensional Fault Report Cause Rules 

The fault report causes were analyzed for both commonality and infeasibility. A commonality rule 
was generated that placed fault report causes with similar signatures together. No infeasibility 
rules were found since each fault report cause is possible. The commonality rule is as follows: 

. One-Dimensional Fault Report Cause Commonality Rule: Two fault report 
causes are considered common if a model of one cannot be distinguished from the 
other The fault report models are characterized by frequency of occurrence, 
burstiness, collaborative signals, correlations with other parameters (system 
functions/signals or other BIT reports), and the effects on the system hardware. 

This commonality rule was applied to the fault report cause tree, and resulted in the selection of 9 
common groups of fault report causes. One representative fault report cause was chosen for each 
group Because of commonality, all of the original fault report causes are represented in the 9 
common groups. The result of the one-dimensional fault report cause down selection is shown in 
Figure 3.1.5-1. 

One Dimensional 
Fault Report Cause 
Down Selection 

False Alarm 
Causes 

Instantaneous 
One-Time 
Fault: EMI 

Intermittent 
Failure Causes 

Slow Rate of 
Occurrence: 
Temperature 

Sporadic 
Occurrences: 
Shock/Vibration 

Component 
Failure: BIT 
Hardware 
Failure 

Hard Failure 
Causes 

Latent BIT Design 
Errors: Timing 
Margins  

Latent 
Design 
Errors 

Constant: 
Temperature 

Real Hardware 
Failure: 
Component Hard 
Failure 

Sporadic 
Occurrences: G-Load 

1_ 
Slow Rate of 
Occurrence: 
Temperature 

Figure 3.1.5-1. One Dimensional Fault Report Cause Down Selection Results 

3.1.6 Two-Dimensional BIT x Fault Report Cause Rules 

A matrix was generated using the results of the one-dimensional BIT technique and fault report 
causes down selection. The matrix contained 108 BIT technique vs. fault report cause entries (see 
Figure 3.1.6-1). Each entry was analyzed for both commonality and infeasibility. A commonality 
rule was generated that placed entries with similar signatures and responses to other entries 
together. No infeasibility rules were found, since all combinations were plausible. The 
commonality rule is as follows: 

• Two-Dimensional   BIT-Fault   Report   Cause   Commonality   Rule:   A 
combination of a fault report cause and a BIT technique is considered common with a 
different combination of fault report cause/BIT technique if the resulting BIT failure 
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signature appears the same. The parameters within the BIT failure signature are 
frequency of report, type of status (pass/fail or threshold/feedback), and burstiness of 
failures. Also, if it is possible to adjust BIT parameters such as a threshold, then the 
manner in which adjustments are made must be the same. 

This commonality rule was applied to the fault report cause x BIT technique matrix which resulted 
in 52 common groups. The BIT technique x fault report cause matrix with commonality groups is 
shown in Figure 3.1.6-1. 
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Figure 3.1.6-1.    Bit Technique x Fault Report Cause Matrix 
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3.1.7 Three-Dimensional  Rules 

The purpose of the three-dimensional down selection was to integrate the results of the one- and 
two-dimensional selections by reviewing the characteristics of each two-dimensional Fault Report 
Cause / Bit Technique for infeasibility and/or commonality in the neural network domain. 

The components were reviewed for commonality and it was determined that no commonality rules 
could be defined, due to the uniqueness of the neural network models' learning algorithms. 

The components were reviewed for infeasibility. The following neural network characteristics 
were identified which could result in infeasibility because of their incompatibility with certain Fault 
Report Causes / BIT Techniques: 

• a need to collect and maintain information sequences over time; 
• a need for automatic learning; 
• a need for adaptiveness in real time; 
• a difficulty with automatic learning. 

The need for collection and maintenance of information over time relates to the temporal neural 
network characteristic. The references to automatic learning relate to network models which use 
unsupervised learning; the need for real-time adaptiveness refers to on-line or real-time learning. 
Table 3.1.7-1 shows the neural network models as they are characterized in these categones. The 
three-dimensional infeasibility rules explain the relationships between these characteristics and BIT 
techniques/Fault Report Causes. 

Table 3.1.7-1. Three-Dimensional Down Select Neural Network Model 
Characteristics 

NETwORk 
MODEL 

Temporal 
Capability 

Unsupervised 
Learning 

On-Line 
Learning 

On-Line & 
Unsupervised 

1.ART1 X X X 

2. ART 2 X X X 

3. Backprop 

4. BPTT & 
Deriv. 

X X 

5. BAM X 

6. Boltzmann 

7. Cascade Corr. X 

8. CCN X 

9. Counterprop. X 

10. Hamming 

11. Hopfield 

12. Kohonen 
SOM 

X 
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TABLE 3.1.7-1.     THREE-DIMENSIONAL DOWNSELECT   NEURAL 
NETWORK MODEL CHARACTERISTICS (continued) 

NETWORK 
MODEL 

Temporal 
Capability 

Unsupervised 
Learning 

On-Line 
Learning 

On-Line & 
Unsupervised 

13. LVQ 

14. PNN X 

15. Recirculation X X X 

16. REINFORCE X X X X 

17. RTRL X X X X 

18. SPR X 

19. Temporal 
Diff. 

X X X X 

Based on these areas of potential infeasibility, five three-dimensional infeasibility rules were 
defined. Each of these rules is presented below, along with its justification and an example fault 
scenario. 

RULE 1: A neural network model is infeasible for use with instantaneous one-time fault report 
causes, for any BIT technique, if it does not provide temporal constructs. 

RULE 1 JUSTIFICATION: An instantaneous one-time fault report cause results in 
one occurrence of a fault report: by definition, the fault report can only occur once within 
some specified time period. The neural network model must have the capability to retain 
and utilize fault report history over that time period, to be able to recognize that the fault 

. report did (or did not) repeat. In this way it can verify the required single occurrence. 

RULE 1 EXAMPLE: An alpha-particle induced error in one cell of a memory during a 
write-read RAM test. 

RULE 2: A neural network model is infeasible for use with constant fault report causes, for any 
BIT technique, if it utilizes an unsupervised learning method. 

RULE 2 JUSTIFICATION: A constant fault report cause results in a fault report 
which is always present. In order for a neural network to classify the report as a false 
alarm, external correlating data such as environmental information can be used. Typically 
the external data value reaches a threshold, at which point the fault report should be 
classified as a false alarm. An unsupervised learning model would not be capable of 
automatically learning the threshold point; it would need to be trained on examples. 

RULE 2 EXAMPLE: Given a BIT fault signature and correlating temperature data, the 
fault signature will become invalid if the temperature goes out of spec. The neural network 
must be able to learn to classify signatures differently once the threshold has been crossed. 

RULE 3: A neural network model is infeasible for use with threshold / feedback BIT techniques, 
for any fault report cause, if it does not utilize unsupervised and on-line learning capabilities. 
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RULE 3 JUSTIFICATION: A threshold / feedback BIT technique is one in which the 
BIT test uses a threshold value to determine the presence or absence of a fault. System 
operation over time can cause the threshold to degrade such that it may no longer be set to 
the correct value We believe that certain neural network models can learn to recognize 
when a threshold is not correct and either automatically adjust it or provide appropriate 
feedback to the BIT system. A neural network model which cannot adaptively learn in real- 
time is not appropriate for this application, since the threshold behavior cannot be known in 
advance and is dependent upon real-time system performance. 

RULE 3 EXAMPLE: A BIT detector which detects a threshold voltage and reports a 
fault if the voltage falls below the threshold can drift over time so that the reports become 
inaccurate. 

RULE 4:  A neural network model is infeasible for use with periodic BIT techniques, for any 
fault report cause, if it does not provide temporal constructs. 

RULE 4 JUSTIFICATION: A periodic BIT technique requires an historical fault 
signature, which contains fault reports accumulated over the BIT test period. A neural 
network model which provides temporal constructs must be used for these situations. 

RULE 4 EXAMPLE: A test channel BIT technique is segmented in time. 

RULE 5: A neural network model is infeasible for use with off-line BIT techniques, for any fault 
report cause, if it does not provide temporal constructs. 

RULE 5 JUSTIFICATION: False alarm filtering of off-line BIT techniques requires 
that the BIT test sequence be run more than once to simulate system behavior over time. 
This can be done by looping the sequence, making each individual test appear periodic, 
similar to an on-line periodic BIT technique. As stated in Rule 4, a periodic BIT technique 

- requires an historical fault signature. A neural network model which provides temporal 
constructs must be used for these situations. 

RULE 5 EXAMPLE: An off-line checksum of a PROM which is executed once at the 
start of an off-line BIT test sequence and is repeated only when the sequence is started 
again. 

Rule 5 contains an important conclusion which was drawn concerning the relationship of off-line 
BIT techniques to false alarm filtering: false alarm filtering can only be applied to an off-line BIT 
technique if the off-line BIT test sequence is cycled, making it appear penodic. The results of the 
test sequence must be collected more than once over time in order to denve any meaningful 
conclusions regarding the possible occurrence of a false alarm. 

3.1.8 Output Matrix 

The final result of Down Selection 1 is shown in the matrix in Figure 3.1.8-1. In summary, the 
initial down selection process began with 37,752 candidates in the problem solution space.- 
Through an iterative series of down selections at each dimensional level, this number was reduced 
to the 528 candidates which appear as darkened squares in Figure 3.1.8-1. 
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The following observations can be made by examining Figure 3.1.8-1. First, the initial down 
selection process did not completely eliminate any BIT techniques or fault report causes. The only 
neural network models which were eliminated were those which were determined to be 
technologically too primitive to be useful. In addition, the down selection process focused at this 
level on extremes such as instantaneous one-time fault report cause, constant fault report cause, or 
highly theoretical neural network models. At this first level of down selection, the researchers 
were careful to avoid bringing real-world constraints into the candidate selection process, and made 
evaluations based on inherent characteristics. 

Fault Report Cause/Bit Technique 

-Eg FeMit,le Number» correspond to the following infeasibility rule* 
1. Inttjntaneou* One-Time Failure 
2. Constant Fault Report 
3. Threshold/Feedback 
4. Periodic BIT 
5. Off-Une BIT 

Figure 3.1.8-1.    Final Result of Down Selection 1:    Output Matrix 

3.2 Down Selection 2 

This section describes the second phase of the Neural Network False Alarm Filter Cartesian cube 
down selection. The first phase of the down selection reduced the Cartesian cube entries from 
37,752 to 528 using infeasibility and commonality rules. The second phase of the down selection 
is described below. It used ranking criteria to rank order each of the 528 entries and further reduce 
the size of the cube. 

3.2.1 List of Criteria 

The first step in this phase of down selection was to generate a list of criteria by which the 
remaining 528 candidate solutions could be ranked. This list is shown in Table 3.2.1-1. Some of 
the criteria were found to be inapplicable at this stage, because they were too system-specific or 
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they were too difficult to judge at this point in time. The entries on the criteria list were marked 
with an L ("later") if they were to be deferred to the next down selection; they were marked with an 
N ("now") if they were immediately applicable. 

Table 3.2.1-1.    Second Down Selection Ranking Criteria 

 CRITERION "" APPUCAMLII V 
N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

Excessive Learning Time 

Implementation Cost (hardware, software, NN, platform) 

Environmental Feedback Required / Available 

Configuration Management 

Logistics Impact: Keeping Repair History 

Logistics Impact: Effect on Lower Level Testing 

Existing Tool Compatibility 

Compatibility with SMART BIT / New Tools 

Likelihood of Occurrence of Fault 

Level of Confidence in / Reliability of NN Model 

Memory Reqt: Long Term 

Memory Reqt: Short Term 

Report Latency (Real Time Constraints) 

Batch Learning 

Cost to Acquire Data from Simulator 

Extent of Improvement from Present Techniques 

Flexibility of Implementation Level 

Extensibility to Fault Isolation (Help with FI) 

Is the Long-term Benefit Accessible to New Systems? 

Flexibility to Changes in System, once incorporated 

Feasibility of Implementing NN in hardware 

Ease of Inclusion of Feedback in Fault Signature 

Excessive Training Data 

Applicability of NN Model to the Problem 

Security 
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3.2.2 Criteria Definitions 

The 17 criteria which were applicable to this phase of the down selection were defined as follows: 

1. Excessive Learning Time: There are two major focuses of this criterion. The first is that there 
are certain neural network models which are inherently slow learners. The second is that an 
adaptive, on-line learning model might take too long to become "operational" in a critical situation, 
such that fault reports would be invalid for an excessive length of time. 

2. Implementation Cost (of entire BIT system, including the neural net enhancement): This 
criterion includes the amount of hardware required to implement the system, the amount of 
software required, the level of difficulty of neural network implementation in both hardware or 
software, as applicable, and platform impact. Platform impact would usually be seen in hardware 
or software; however, there might be some other type of impact, such as logistics. An example 
would be a requirement to add environmental information which would change the platform 
design. 

3. Environmental Feedback Required: The reinforcement learning network models must have an 
input from the environmental, as a signal of how well the network is performing. Also, some BIT 
techniques will require the addition of environmental data to remove potential ambiguities in the 
signature classification. An example of this would be a constant false alarm, which would require 
some environmental feedback to distinguish it from a real fault. 

4. Configuration Management: This criterion refers to the different levels of system configuration 
control which would result from the different neural network learning methods. A supervised 
learning model in which the network weights are set before the network is installed in a system, 
and which must be taken off-line, retrained, and reinstalled, is the most conducive to strict 
configuration management, since the network would be exactly the same at any site, and change 
control could be carefully managed. On the other hand, an adaptive, on-line learning network 
would evolve over time in potentially very different ways at different sites (depending upon the 
differences in the data presented to it), making configuration management difficult. 

5- Likelihood of Occurrence of Fault Report: How common is the fault report in a real platform: a 
faulty report which occurs all the time is more important to correct or eliminate than one which 
occurs only rarely. 

6- Level of Confidence in / Reliability of Neural Network Model: Certain network models can be 
considered more reliable than others due to their maturity and to their continued application, 
examination, and optimization. Others are newer, more experimental, without a significant history 
of success in any particular problem domain. These would have a lower level of confidence; 
however, they would still be considered appropriate for certain problems. 

7- Long-Term Memory Requirement: This criterion addresses the situation in which an adaptive, 
on-line learning network which utilizes dynamic memory allocation for exemplars can gradually 
evolve to such a large size that the system's memory (RAM)) resources, as well as permanent 
storage resources, could be exhausted. The problem with this situation is that the time of 
occurrence cannot be predicted. Again, this is dependent upon the network model and upon the 
type of data it sees. 

8- Short-Term Memory Requirement: This criterion refers to the level of RAM utilization in short- 
term system operation. It is meant to focus on both the efficiency of RAM usage of the neural 

28 



network model, as well as the risks associated with dynamic memory allocation coupled with 
adaptive SEüng, which are characteristic of some models. These models typically create new 
"exemplars" when an input is sufficiently different from the existing exemplars in the network. The 
rapidity of exemplar growth (and memory usage) is dependent upon the uniqueness of the data on 
which the network is learning, where more unique data will drive the memory usage up. 

9 Re.nort Latency: The amount of time it takes for the neural network to produce its output 
(classiflcatiSrThis would be a risk if the fault report were required to be seen immediately^uch 
as a critical safety situation. This criterion could involve the architecture of the network (number of 
nodes, connections), as a reflection of execution time. 

10 Frennencv of Off-Line. fBatch^ T earning Required for System Updates: The requirement to 
take a system off-line to retrain a supervised learning neural network can be a cost nsk to certain 
systems This criterion addresses the situation where frequent retraining would cause adverse 
impact on system operation. We feel that this would be more likely to occur in situations where a 
representative sample of training data is difficult to collect or simulate accurately or completely. 

11. Fxtent of Tmprovp.me.nt from Present Techniques: The potential payback of the neural network 
enhanced technique. 

12 Flexibility of Implementation Level: This refers to the flexibility with which the neural 
network can be inserted into the system. This is directly related to the level of dependence upon 
the frequency of fault report. At the lowest system level (BIT technique function level), fault 
reports occur at a higher frequency than at higher system levels where fault status is obtained by 
gathering fault reports from lower levels. If the classification requires a high report frequency, 
then the implementation would be restricted to the lower system level. 

13. Flexibility to Future System Modifications: How adaptive will the neural network system be 
to physical changes in the system, once it has been installed. 

14 Fase of Inclusion of Collaborative and/or Correlating Data in the Fault Signature: How easy is 
it either in software simulation or on the real platform, to pull collaborative and/or correlating data 
(such as environmental data) into the fault signature, for input into the neural network. This means 
that the C/C data can be meaningfully embedded within the fault signature, such that it will be used 
by the network to learn additional information. 

15 Excessive Training Data: This criterion is similar to the previous one, but focuses on the 
combination of a network model which exhibits slow training coupled with a requirement to 
provide it with an unusually large amount of data in order for it to become sufficiently trained. 

16 Applicability of the Neural Network Model to the Problem: Some networks are more suited 
to solve certain problems than others, for example, the backpropagation network is typically used 
as a classifier or pattern recognizer. 

3.2.3 Criteria Weighting 

The criteria were weighted and categorized as shown in Table 3.2.3-1. Each of the criteria was 
assigned a weight, from 0 to 10, relative to the others, with zero (0) signifying lowest importance 
and ten (10) signifying highest importance. Each criterion was then identified as either a benefit or 
a cost. The sum of the benefits was made equal to the sum of the costs so that costs and benefits 

29 



would contribute equally to the overall ranking. The Report Latency criterion was found to have 
no impact in this down selection, so it was weighted zero, but was kept in the set for historical 
purposes. 

Table 3.2.3-1.    Second Down Selection Criteria 
Categorization and Weighting 

CRITERION WEIGHT COST BENEFIT 1 

< 

Likelihood of Occurrence of Fault Report 10 10 

Ease of Inclusion of Collaborative / Correlating 
Data in Fault Signature 

9 9 

Implementation Cost 8 8 

fc-xtent ot Improvement from Present Techniques 8 8 

Excessive Learning Time 6 6 

Environmental Feedback Required 6 6 

Short-Term Memory Requirement 5 5 

Applicability of NN Model to the Problem 5 5 

Frequency of Off-Line (Batch) Learning Required 
for System Updates 

5 5 

Configuration Management 4 4 

Long-Term Memory Requirement 3 3 

Level of Confidence in / Reliability of NN Model 3 3 

Excessive Training Data 3 3 

Flexibility to Future System Modifications 3 3 

Flexibility of Implementation Level 2 2 
Report Latency 0 0 

TOTAL 80 40 40 
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3.2.4 Ranking Methodology 

A rankine system was used to evaluate each of the 528 candidates based on the criteria A table 
wasTve!opyed to aid in determining the scores for the entries. This table consisted of the neural 
network models (N) , BIT techniques (B), and fault report causes (ER) on one axis and the 
S criteria on the other. The N, B, and FR were evaluated separately for each criterion. An 
integer value from -3 to +3 was assigned to each N, B, and FR. The relative significance of the 
integer values is given below in Table 3.2.4-1. 

Table 3.2.4-1.    Second Down Selection Score Values 

Description Value 

0 

-2 

Exceptionally positive 
Notably above average 
Above average 
Average; no significant difference from typical entry 
Below average 
Notably below average 
Exceptionally negative 

The relationships between the N, B, and FR were considered for various N, B, and FR 
combinations for each ranking criteria. Equations were generated for each criterion to represent 
this relationship. Application of the equations to the N, B, and FR integer values resulted in an 
integer value from -3 to +3 with the same significance as defined above. 

3.2.5  Ranking Results 

A master matrix was used to rank each of the 528 candidate solutions using the ranking criteria. 
Each entry in the matrix received a score for each of the criteria, based on application of the 
equations defined in the previous step. The individual scores were summed together to provide a 
total score for each entry. The entries were then sorted by their individual total score to provide an 
overall ranking. 

The 528 entries in the master matrix were initially grouped alphabetically by neural network model 
into 19 groups. The Adaptive Resonance Theory (ART 1 and 2) models were so similar in 
functionality that they were identical in criteria weighting. Therefore, the two were combined and 
called "ART", leaving 18 groups. When the master matrix was sorted as a whole, the resulting 
sorted list was very large and it was apparent that the results would be clearer if each neural 
network group were sorted individually, so those sorts were performed. After sorting each 
neural network group, the scores for all entries within each group were summed to produce 18 
neural network scores.   Table 3.2.5-1 shows the resulting ranking of neural networks. 
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Table 3.2.5-1.    Neural Network Ranking Results 

NEURAL NET MODEL NN SCORE 
SPR 714 
BPTT 623 
Backprop 596 
ART 284 
REINFORCE 234 
Recirculation 200 
LVQ 134 
Cascade Correlation 69 
CCN 23 
Counterprop 4 
Kohonen -6 
PNN -16 
Boltzmann -72 
Hamming -74 
Hopfield -74 
BAM -168 
TD -390 
RTRL -540 

Based on the neural network ranking, the top six neural network groups were chosen from the 
entire matrix. The quantity of six was selected because it is 50% above what is believed will be the 
maximum number of demonstration candidates (four). The set of six consisted of approximately 
200 entries. Based on individual entry scores, the top 5 candidates were selected from each neural 
network group, resulting in 30 final candidates. The top 5 from each network group were selected 
to provide a diversity of network models. The quantity 30 was a somewhat arbitrary choice: it is a 
reasonable number with which to begin the final down selection, and the 30 candidates are also 
reasonable choices. The 30 final candidates are summarized in Table 3.2.5-2. 

Table 3.2.5-2.    Top 30 Summary 

NN Model / Fault Report Cause / BIT Technique 

ART/Slow Rate (Temperature)/Error Correcting (Viterbi) 

ART/Slow Rate (Temperature)/Transition Count 

ART/Slow Rate (Temperature)/Comparison (Analog Voltage) 

ART/Slow Rate (Temperature)/Threshold (Ratio Detect) 

ART/Slow Rate Intermittent(Temperature)/Error Correcting(Viterbi) 

Backprop/Sporadic (Vibration)/Transmission Coding (Parity) 
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Table 3.2.5-2.    Top 30 Summary (continued) 

NN Model / Fault Report Cause / BIT Technique 

Backprop/Sporadic (Vibration)/Continuous (Activity Detect) 

Backprop/Sporadic Intermittent (Ü load)/Iransmission Coding (Parity) 

Backprop/Sporadic Intermittent (G load)/Continuous (Activity Detect; 

Backprop/Sporadic (Vibraüon)/Slow Rate (ROM Checksum) 

BPTT/Slow Rate (Temperature)/Continuous (Activity Detect) 

BPTT/Slow Rate (Temperature)/Slow Rate (ROM Checksum) 

BPTT/Slow Rate (Temperature)/Periodic (Boundary Scan) 

BPTT/Slow Rate (Temperature)/Off-line BIT 
BPTT/Slow Rate Intermittent (Temperature)/Continuous (Activity Detect) 

REINFORCE/Slow Rate (Temperature)/Continuous (Activity Detect) 

REINFORCE/Slow Rate (Temperature)/Slow Rate (ROM Checksumf 

REINFORCE/Slow Rate (Temperature)/Periodic (Boundary Scan) 

REINFORCE/Slow Rate (Temperature)/Off-line BIT 

REINFORCE/Slow Rate (Temperature)/Error Correcting (Viterbi)" 

SPR/Slow Rate (Temperature)/Continuous (Activity Detect) 

SPR/Slow Rate (Temperature)/Slow Rate (ROM Checksum) 

SPR/Slow Rate (Temperature)/Periodic (Boundary Scan) 

SPR/Slow Rate (Temperature)/Off'-line BIT 

SPR/Slow Rate Intermittent (Temperature)/Continuous (Activity Detect) 

Recirculation/Slow Rate (Temperature)/Error Correcting (Viterbi) 

Recirculation/Slow Rate (Temperature)/Transition Count 

Recirculation/Slow Rate (Temperature)/Comparison (Analog Voltage) 

Recirculation/Slow Rate (Temperature/Threshold (Ratio Detect) 

Recirculation/Slow Rate Intermittent (Temperature)/Error Correcting (Viterbi) 
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3.2.6 Traceability to Down Selection 1 

Table 3.2.6-1 provides a traceability summary that shows which neural network models, BIT 
techniques, and fault report causes remain after the second down selection process. The 
justifications in this table serve to confirm that our selected set of 30 will provide a reasonable basis 
for performing the last down selection. 

Table 3.2.6-1.    Traceability to Down Selection 1 

NEURAL NETWORK 
MODEL 

In/Out Comment 

1. ART 1 IN Unsupervised, on-line learning 
2. ART 2 Out Covered by ART 1 
3. Backpropagation IN Well-known model, efficiency 
4. Backpropagation Through Time IN Temporality with well-known parent 
5. Bidirectional Associative 
Memory 

Out Not well-suited to this problem 

6. Boltzmann Out Not well-suited to this problem 
7. Cascade Correlation Out Average model 
8. Compound Classifier Network Out Average model 
9. Counterpropagation Out Average model 
10. Hamming Out Not well-suited to this problem 
11. Hopfield Out Not well-suited to this problem 
12. Kohonen Self-Organizing Map Out Average model 
13. Learning Vector Quantization Out Average model 
14. Probabilistic Neural Network Out Average model 
15. Recirculation IN Unsupervised learning 
16. REINFORCE IN Temporality 
17. Real-Time Recurrent Learning Out Low level of confidence in model 
18. Spatio-Temporal Pattern Recog. IN Temporality 
19. Temporal Differences Out Low level of confidence in model 

BIT TECHNIQUE In/Out Comment 
1. Pass/Fail Continuous 
Trans.Coding 

IN Flexibility of implementation 

2. Pass/Fail Continuous Concurrent Out Commonality with 1 and 3 
3. Pass/Fail Continuous Cont. 
Monitor 

IN Flexibility of implementation 

4. Slow Rate Continuous ROM IN Flexibility of implementation 
5. Slow Rate Continuous RAM Out Commonality with 4 
6. Periodic Scan IN Flexibility of implementation 
7. Periodic Functional Tests Out Commonality with 6 
8. Off-Line BIT IN Considered to be like Periodic 
9. Threshold Feedback Error Corr IN New technique 
10. Threshold Feedback Trans Ct IN New technique 
11. Threshold Feedback Comp IN New technique 
12. Threshold Feedback Rat Detect IN New technique 
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Table 3.2.6-1.    Traceability to Down Selection 1 (continued) 

FAULT REPORT CAU^E In/Out Comment 
1. Instantaneous One-Time Fault Out Difficult to model, not likely to occur 
2. Sporadic Occurrences IN Likely to occur, higher payback 
3. Slow Rate of Occurrence IN Likely to occur, higher payback 
4. Constant Out Need collaborative data, neural net not 

necessary to solve problem 
5. Intermittent Component Failure Out Difficult to model, signature would be 

covered by 7,8 
6. Intermittent Latent BIT Design 
Error 

Out Difficult to model, signature would be 
covered by 7,8 

7. Latent Design Sporadic IN Likely to occur, higher payback 
8. Latent Design Slow Rate IN Likely to occur, higher payback 
9. Real Hardware Failure Out Collaborative data helpful, neural net not 

necessary to solve problem 

3.3 Final Down Selection 

3.3.1 Final Down Selection Methodology 

The purpose of the final down selection was to reduce the number of demonstration candidates 
from 30 to approximately 10, all of which would be equally appropriate for the demonstration, and 
to select the final demonstration candidates from this set. The top 30 candidates from the second 
down selection were examined on an individual basis, looking for quantitative reasons why they 
should be eliminated. In the process of looking at each candidate for advantages and 
disadvantages, a last set of down selection rules was formulated. These rules are discussed 
below. 

RULE 1. The BIT feedback techniques are ideally attractive because they have the 
potential to significantly improve the BIT process. However, for the purposes of 
this demonstration, some are too complex to implement or too difficult to model 
with the MILSTAR simulator. The concept of these techniques would be to have 
the neural network learn how to adjust thresholds or test criteria within the BIT 
system and then feed this result back into the system, providing dynamic threshold 
adjustment in real time. In order to implement this concept, the BIT system 
software would require modification to allow for the dynamic threshold adjustment, 
and the MILSTAR simulator would also require modification to incorporate this 
functionality. The BIT techniques which fall into this category are the Comparison 
and Threshold techniques. 

RULE 2. During this down selection, the concept of the fault signature was 
looked at in some detail, in order to provide a common focus for discussion. Fault 
signatures were proposed for all types of BIT techniques, and for the fault report 
causes. (Fault signatures are discussed in Section 4.1, Fault Model) As a result of 
this process, it became apparent that when the BrT technique is the same, certain 
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fault report causes due to false alarms will belong to the same family of fault 
signatures as fault report causes due to intermittent failures. These fault report 
causes can be considered in pairs since both will need to be modeled in order for the 
neural network to distinguish between them and classify each one correctly. These 
fault report pairs are Slow Rate Continuous / Slow Rate Intermittent Continuous, 
and Sporadic Continuous / Sporadic Intermittent Continuous. It was determined 
that by selecting one of these as a demo candidate, both would effectively be 
demonstrated. 

RULE 3. As a result of examining and defining fault signatures, it was 
determined that the fault report signatures for Transmission Coding and Continuous 
BIT techniques cannot be distinguished because they have the same frequency of 
occurrence. Therefore, only one of these techniques should be selected, and that 
choice will be arbitrary, since both are effectively equivalent. 

RULE 4. Continuous, Slow Rate, Periodic, and Off-Line Fault Report Causes 
will all have the same signature, but the frequency of this signature will be 
elongated in time (from Continuous to Off-Line) as the report frequency decreases. 
Continuous has the highest reporting frequency and therefore the best resolution of 
information. In addition, because the BIT system will be modeled at different 
levels of test (from BIT level through subsystem level to system level), it was 
determined that a Continuous fault report may appear to be Slow Rate or Periodic at 
higher system levels as the frequency of fault reporting decreases. A Continuous 
fault report at the BIT level may appear to be a Slow Rate or Periodic fault report at 
the system level, because the reports are sampled and read at longer intervals of 
time. Since we will implement the neural network improvements at varying 
reporting levels within the system, a Continuous fault report cause will also 
represent Slow Rate, Periodic, and Off-Line, and all may be studied and compared 
by modeling just one. Therefore, all but Continuous can be eliminated. 

RULE 5. Two of the groups of solutions (ART and Recirculation) were identical 
except for neural network model. This led to a comparison of ART and 
Recirculation, to determine if one were more suited to the particular BIT/Fault 
Repon Cause combination. This comparison resulted in the decision that ART 
should be selected and Recirculation should be eliminated. The reasons for this 
decision are that Recirculation has a narrower domain of applicability, typically 
applied to problems involving noise filtering where auto-association is required (in 
auto-association, the network is presented with an input and is expected to respond 
with the same uncorrupted input). The ART network is more complex than 
Recirculation, but this complexity allows it to be applied to more general 
classification problems, a capability which is required for our application. 

Table 3.3.1-1 shows the results of this down selection. The value in the second column is the rule 
number (from above) which either eliminates the entry or relates it to an equivalent entry. This 
down selection has reduced the selection space from 30 to 8 (entries 1 and 5, 6 and 7, 8 and 9, 11 
and 15, 21 and 25 are counted as one by rules 2 and 3). 
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Table 3.3.1-1.    Results of Applying Final Down Selection Rules 

Entry Rule NN/Fault Report Cause/BIT  lechmque 

1 2 ART/Slow Rate (temp)/Error Correct (Viterbi) 

2 ART/Slow Rate (temp)/Transition Count 

3 1 ART/Slow Rate (temp)/Comparison (Analog Voltage) 

4 1 ART/Slow Rate (temp)/Threshold (Ratio Detect) 

5 2 ART/Slow Rt Int (temp)/Error Correct (Viterbi) 

6 3 Backprop/Sporadic (vib)/Transmission Coding (Parity) 

7 3 Backprop/Sporadic (vib)/Continuous (Activity Detect) 

8 3 Backprop/Sporadic Int (G load)/Trans Coding (Parity) 

9 3 Backprop/Sporadic Int (G load)/Continuous (Act Detect) 

10 4 Backprop/Sporadic (vib)/Slow Rate (ROM Checksum) 

11 2 BPTT/Slow Rate (temp)/Continuous (Activity Detect) 

12 4 BPTT/Slow Rate (temp)/Slow Rate (ROM Checksum) 

13 4 BPTT/Slow Rate (temp)/Periodic (Boundary Scan) 

14 4 BPTT/Slow Rate (temp)/Off-line BIT 

15 2 BPTT/Slow Rt Int (temp)/Continuous (Activity Detect) 

.    16 REINFORCE/Slow Rate (temp)/Continuous (Act Detect) 

17 4 REINFORCE/Slow Rate (temp)/Slow Rate (ROM Chksm) 

18 4 REINFORCE/Slow Rate (temp)/Penodic (Boundary Scan) 

19 4 REINFORCE/Slow Rate (temp)/Off-line BIT 

20 REINFORCE/Slow Rate (temp)/Error Correct (Viterbi) 

21 2 SPR/Slow Rate (temp)/Continuous (Activity Detect) 

22 4 SPR/Slow Rate (temp)/Slow Rate (ROM Checksum) 

23 4 SPR/Slow Rate (temp)/Penodic (Boundary Scan) 

24 4 SPR/Slow Rate (temp)/Off-line BIT 
25 2 SPR/Slow Rt Int (temp)/Continuous (ActivityDetect) 

26 5 Recirculation/Slow Rate (temp)/Error Correct (Viterbi) 

27 5 Recirculation/Slow Rate (temp)/Transition Count 

28 1 Recirculation/Slow Rate (temp)/Comparison (Analog Voltage) 

29 1 Recirculation/Slow Rate (temp)/Threshold (Ratio Detect) 

30 5 Recirculation/Slow Rt Int (temp)/Error Correct (Viterbi) 
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Table 3.3.1-2 shows the recommended choices for the final demonstration. A value in the Choice 
column indicates that the entry is recommended for demonstration. We recommend that choice 1 
be implemented to evaluate the performance of a newer, more experimental neural network model 
which provides a temporal capability (REINFORCE). This will also demonstrate the effectiveness 
of a Threshold/Feedback BIT Technique.   We recommend that either choice 2A or 2B be 
implemented to evaluate another temporal model (BPTT or SPR). Either choice 3A or 3B could be 
selected since they are equivalent; either one will provide a means of evaluating the effect of 
Vibration on the performance of Backpropagation. Either choice 4A or 4B could be selected since 
they are equivalent; either one will allow an evaluation of Backpropagation affected by G-Load. 

Table 3.3.1-2.    Recommended Choices for Demonstration 

Entry Choice INIWault Report Cause/BIT Technique 
1 ART/Slow Rate (temp)/Error Correct (Viterbi) 
2 ART/Slow Rate (temp)/Transition Count 
3 ART/Slow Rate (temp)/Comparison (Analog Voltage) 
4 ART/Slow Rate (tempYThreshold (Ratio Detect) 
5 ART/Slow Rt Int (temp)/Error Correct (Viterbi) 
6 3A Backprop/Sporadic (vib)/Transmission Coding (Parity) 
7 3B Backprop/Sporadic (vib)/Continuous (Activity Detect) 
8 4A Backprop/Sporadic Int (ü load)/Trans Coding (Parity) 
9 4B Backprop/Sporadic Int (Ci load)/Continuous (Act Detect) 
10 Backprop/Sporadic (vib)/Slow Rate (ROM Checksum) 
11 2A BF1 I/Slow Rate (temp)/Continuous (Activity Detect) 
12 BPTT/Slow Rate (temp)/SIow Rate (ROM Checksum) 
13 BPTT/Slow Rate (temp)/Penodic (Boundary Scan) 

- 14 BPTT/Slow Rate (temp)/Off-line BIT 
15 BFi i/Slow Rt Int (temp)/Continuous (Activity Detect) 
16 REINFORCE/Slow Rate (temp)/Continuous (Act Detect) 
17 REINFORCE/Slow Rate (temp)/Slow Rate (ROM Chksm) 
18 REINFORCE/Slow Rate (temp)/Periodic (Boundary Scan) 
19 REINFORCE/Slow Rate (temp)/Off-line BIT 
20 1 KBIWhORCE/Slow Rate (temp)/Error Correct (Viterbi) 
21 2B SPR/Slow Rate (temp)/Continuous (Activity Detect) 
22 SPR/Slow Rate (temp)/Slow Rate (ROM Checksum) 
23 SPR/Slow Rate (temp)/Penodic (Boundary Scan) 
24 SPR/Slow Rate (temp)/Off-line BIT 
25 SPR/Slow Rt Int (temp)/Continuous (ActivityDetect) 
26 Recirculation/Slow Rate (temp)/Error Correct (Viterbi) 
27 Recirculation/Slow Rate (temp)/Transition Count 
28 Kecirculation/Slow Rate (temp)/Comparison (Analog Voltage) 
29 Recirculation/Slow Rate (temp)/Threshold (Ratio Detect) 
30 Recirculation/Slow Rt Int (temp)/Error Correct (Viterbi) 
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3.3.2 Final Down Selection Results 

Table 3.3.3-1 shows the four final demonstration approaches and four alternatives. 

Table 3.3.3-1    Final Demonstration Approaches 

Neural Network 
Model 

REINFORCE 

Backpropagation 
Through Time (BPTT) 
Backpropagation 

Backpropagation 

Fault Report Cause 
Slow Rate 
(Temperature) 
Slow Rate 
(Temperature) 
Sporadic (Vibration) 

Sporadic Intermittent 
(G-Load) 

BIT Technique 
Error Correction 
(Viterbi) 
Continuous (Activity 
Detection) 
Transmission Coding 
(Parity) 

Transmission Coding 
(Parity) 

Alternative 
Approach 

Neural Network 
Model: ART 
Neural Network 
Model: SPR 
BIT Technique: 
Continuous (Activity 
Detection) 
BIT Technique: 
Continuous (Activity 
Detection)      

By selecting these approaches, the following benefits were anticipated: 

• We could evaluate the REINFORCE neural network model, which is a newer, more 
experimental model with a temporal capability. 
• We could examine the benefits of the Threshold/Feedback BIT Technique, which is also 
newer and more experimental. 
• We could evaluate Backpropagation Through Time as a second, more established 
temporal neural network model. 
• We could assess backpropagation (the most widely used neural network model) in a 
temporal context. 
• We could investigate three distinct variations of fault signatures: temperature, vibration, 
and G-load. 

Note that the BPTT network was later replaced by the SPR network because of limitations of the 
commercial neural network development tool which was used on the NNFAF contract. 

4. TARGET SYSTEM 

4.1 Fault Model 

The NNFAF contract used simulated fault data as input to the neural networks. To define the 
scope and functionality of the simulation process, a model was developed based on the following 
definitions and assumptions. The model was initially conceived at the conclusion of the final down 
selection task and was refined during the definition of the BIT simulator requirements. 

BIT status reports are not only based on the BIT analysis and reporting circuit, but also on any 
circumstance that can cause a fault report. BIT circuitry usually analyzes data and reports status at 
a regular interval. A series of BIT device status reports over a given time interval is called a BIT 
fault signature (Figure 4.1-1). 
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Figure 4.1-1.   General Concept of BIT Fault Signature 

A fault report cause is any circumstance that can make the BIT circuitry report a failure. For 
NNFAF, a model was implemented that contains BIT device fault signatures and a fault report 
cause, and represents the relationship between the two. The model was later used in formulating 
the requirements for the BIT simulations. 

4.1.1 BIT Fault Report Signatures 

During the final down selection period, we investigated BIT fault signatures and found that typical 
BIT fault reports have similar fault signatures which vary only in the frequency with which they 
are reported. Unique BIT reports, such as those from threshold/feedback techniques, do not fit 
this pattern. Therefore, two general types of fault report signatures were considered: pass/fail and 
error correcting. They are discussed below. Appendix E shows the fault signatures which were 
defined for the NNFAF BIT techniques. 

4.1.1.1 Pass/Fail BIT Fault Report Signatures 

The most common type of BIT signature is a single binary bit status report at regular intervals that 
represents a pass or fail state, for example, a parity BIT technique. Under normal circumstances 
the BIT report has a very low probability of reporting a failure. A fault report cause curve can be 
added to the BIT model to represent a temporal situation which changes the probability that a 
failure will be reported. Figure 4.1.1.1-1 represents a pass/fail BIT signature. 
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Figure 4.1.1.1-1.    Pass/Fail BIT Fault Report Signature 

The x axis represents time with a tick mark at each discrete BIT status report. The y axis 
presents the magnitude of a fault report cause. As the fault report cause magnitude increases, he 
P^SilIty of repLing a failure slowly increases. Eventually, V^^ "^Ä^ 
magnitude of the fault report cause begins to have a more pronounced effect on the BIT circuit and 
SKKbUity of reporting a failure rapidly increases. Figure 4.1.1.1-2 is an example of what the 
change in probability of failure looks like as the magnitude of the fault report cause increases. 
Once the threshold is exceeded, the circuit performance falls off. 
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Figure 4.1.1.1-2.    Theoretical Effect of Fault Report Cause on Failure Report 
Probability 

Circuits will perform effectively while the fault report cause is beneath the failure threshold. Once 
the threshold is exceeded, then failures are expected. 
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For NNFAF, the simulator model used a simplified version of this curve as shown in Figure 
4.1.1.1-3. 
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Figure 4.1.1.1-3.    Effect of Fault Report Cause on Failure Report Probability, as 
Implemented for NNFAF 

4.1.1.2 Error Correcting BIT Fault Report Signatures 

An enhanced BIT report is available from circuits that perform error correction, for example, a 
Viterbi decoder. These BIT circuits can be designed to report three failure states: 

1. ,      Pass 
2. Error detected and corrected 

. 3.        Error detected but not correctable 

An error correcting BIT fault report signature is similar to the pass/fail BIT signature, except that 
two thresholds exist that define boundaries between the three failure states. Figure 4.1.1.2-1 
shows an example of an error correcting BIT signature. 
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Figure 4.1.1.2-1.    Error Correcting BIT Fault Report Signature 
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If the fault report cause magnitude is below the 'error detected and corrected' threshold, then the 
probability of reporting a correctable error is very low, and the probability of reporting a non- 
correctable error is extremely low. If the fault report cause magnitude is between the two 
thresholds then the probability of reporting a correctable error begins to increase rapidly but the 
probability of reporting a non-correctable error is still very low. When the upper failure threshold 
is exceeded, the probability of reporting a correctable fault is very high and increasing, and the 
probability of reporting a non-correctable failure increases rapidly. 

4.1.2 Fault Report Cause Model 

For NNFAF a fault report cause was modeled as a curve representing magnitude of the fault 
report cause'over time. A threshold is defined for the curve to represent the magnitude where 
failure reports are expected to appear. This curve can be used to model any circumstance that will 
effect functional operation over time. Some examples of fault report cause curve models are 
temperature vibration, and G-load. We believe that other situations can be represented as a fault 
report cause curve as long as their effect on a circuit can be modeled over time The fault report 
cause curve definition methodology is described in Appendix F. The three fault report cause 
models which were selected for NNFAF (temperature, vibration, and G-load) are shown in Mgure 
4.1.2-1. 
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Figure 4.1.2-1.    NNFAF Fault Report Causes 
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4.1.3 Combined BIT Signature/Fault Report Cause Model 

The BIT signature and fault report cause model are combined to produce a BIT'signature^model 
K^SÄport cause' This model is produced by overlapping the BIT signature and a 
fault report cause model (curve) as shown in Figure 4.1.3-1. 

probability of fault report increases 
with environment magnitude above 

threshold Threshold 

MMII Mill Mill MM IHM MM Mill MINIMI Mill 

BIT Technique 
report 

Failure detection states:   0: No error 
1: Error detected 

The threshold will vary for different systems. 

Figure 4.1.3-1. BIT Signature Combined With Fault Report Cause 

Sv^m characteristics vary slightly based on the operational platform, operational life and other 
SS^Ä^ük threshold for a BIT circuit will vary for njlnpfcv™ of the 
same system and over time. Therefore, a boundary was defined called the^ False 
AlSrrVIntermittent Boundary, to represent the expected system threshold (see Figure 4.1.3-2). 
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False AJjjrm/Infönrüttent 
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Figure 4.1.3-2.    False Alarm/Intermittent Boundary 

At different times, an actual system may have failure thresholds at different magnitudes than the 
boundary If the threshold is above the boundary, then the actual system is operating better than 
the expSted system and any failure reports will be false alarms. Conversely, if the threshold is 
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below the boundary, then the actual system begins to report failures before the boundary is 
reached. This represents an intermittent failure. As an example, Figure 4.1.3-3 shows a pass/fail 
BIT signature model with a temperature fault report cause. 

time 

Figure 4.1.3-3 Pass/Fail BIT Signature with Temperature Fault Report Cause 

This model represents a system that is susceptible to intermittent failures when the temperature 
exceeds the threshold. If the threshold is above the maximum magnitude of the fault report cause 
curve, then failures would not be expected and the system would operate effectively. If the 
threshold is at the zero magnitude of the fault report cause curve or lower, then the system would 
constantly report failures (the magnitude of the fault report cause would always be above the 
threshold) as would be expected from a hard failure. 

From this model, network classifications were defined to correspond to the failure classifications 
described above. The No Fault class occurs when the threshold is at or above the maximum 
magnitude of the fault report curve. The False Alarm class occurs when the threshold is below the 
maximum magnitude of the fault report curve, but at or above the False Alarm/Intermittent 
Boundary. The Intermittent Failure class occurs when the threshold is below the False 
Alarm/Intenriittent Boundary, but above the zero magnitude of the fault report cause curve. The 
Hard Fault class occurs when the threshold is at or below the zero magnitude of the fault report 
cause curve. 

The combined BIT signature/fault report cause model produces a fault signature consisting of a 
stream of data bits over time. A pass/fail BIT fault signature will contain a binary data stream, 
whereas an error correcting BIT signature will contain a data stream with three values (0=pass,' 
l=corrected error, 2=non-correctable error). Examples of data streams for various thresholds, for 
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pass/fail and error correcting BIT signatures are shown in Figures 4.1.3-4 and 4.1.3-5, 

respectively. 
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Boundary       

p   I   I  I   I  I   i  i   i   l   l  I   I  I   I   I   I  I   I   I  I   I   I  I   I   I   I  I   I  I   I   I   I  I   I   I I 

Possible BIT Reports in response to the curve above: 
Functional system with thresholds above depicted boundary: 
0000000000000001011011000000000000000 

Functional system with false alarm (threshold at boundary): 
0000000000010101011011101000000000000 

System with intermittent failure (threshold lower than boundary): 
0000000001011011011U11010 10000000000 

Figure 4.1.3-4. Data Streams for Pass/Fail BIT Signatures at Various Thresholds 

non-correctable error detected 

error detected and correaied 
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BIT Reports: 
Functional system with thresholds above depicted boundaries: 
0000000000000001011011000000000000000 

Functional system with false alarm (thresholds at boundaries): 
0000000000000101 101011010100000000000 

System with intermittent failure (thresholds lower than boundaries): 
0000000000101121211221201101000000000 

Figure 4.1.3-5.   Data Streams for Error Correcting BIT Signatures at Various 
Thresholds 
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4.2 MILSTAR System 

4.2.1  System Overview 

The MILSTAR EHF/UHF terminal supports both a MILSTAR-specific frequency-hopping 
EHF/SHF waveform using sophisticated processing satellites, and a number of older existing 
UHF AFSATCOM modes employing existing non-processing satellites. Figure 4.2.1-1 is a 
simplified block diagram stressing the fault status collection reporting paths. A further description 
of the terminal and the bit collection/processing follows. 
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Figure 4.2.1-1.   Simplified MILSTAR EHF/UHF Terminal Block Diagram 

The terminal is functionally divided into three major groups: the common group, the EHF group 
and the UHF group. The common group provides functions common to MILSTAR EHF/SHF and 
AFSATCOM UHF modes, including general system control and status collection, 
operator/maintainer interfaces and frequency standards. The EHF group consists of the LRUs 
which provide EHF/SHF waveform modulation/transmission and receive/demodulation, power 
amplification , antenna control, and cryptographic functions. Sets of red (unencrypted) and black 
(encrypted or unclassified) user baseband ports are provided by dedicated interfaces within the 
common group. The UHF group provides essentially the same capabilities as the EHF group, 
except that it supports the backward-compatible AFSATCOM UHF waveforms and modes using 
predominantly existing inventory equipment. 
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The Common Group consists of the following major LRUs. The Terminal Access Controller 
(TAC) provides most of the control for the LRUs on the black side of the terminal, a suite of black 
baseband ports, and the satellite access protocols and tracking loops. It consists of a Data General- 
Eclipse based ROLM 16 bit processor, associated RAM, NVRAM and ROM, and a set of serial 
and parallel I/O ports. 

The Baseband Processor (BBP) provides a suite of red baseband ports, associated multiplexing 
functions, control of the cryptographic subsystems and interfaces ^ the operator 
display/keyboard(s). It is similar to the TAC, consisting of a Data General-Eclipse based ROLM 16 
bit processor, associated RAM and ROM, a set of serial and parallel I/O ports, and a controller for 
the EHF cryptographic device which is hosted by the BBP. 

The Time Frequency Standard (TFS) provides the basic timing references for the terminal system 
and maintains a time-of-day clock which will operate through nuclear event disruptions. It consists 
of a Cesium beam frequency standard and distribution amplifiers, time-of-day clock circuits and a 
microprocessor-based interface to the TAC . 

The Display/Keyboard subsystem is actually two LRUs . They provide the operator input/output 
interface The subsystem consists of a microprocessor-based plasma display and an enhanced 
keyboard. Terminals may have one or two display/keyboard systems, depending on the terminal 
type. 

The EHF Equipment Group consists of the following major LRUs. The EHF Modem provides 
the MILSTAR uplink modulation and downlink demodulation functions, plays a part in satellite 
time frequency, and spatial tracking, and supports black side cryptographic functions. The most 
complex of the MILSTAR LRUs, the Modem consists of 2 general purpose microprocessors, 
three 2900 bit-slice processors, multiple dedicated hardware cards, many which employ 
independent state sequencers, and an RF/analog section. 

The Receiver/Synthesizer Unit (RSU) consists of two sets of ping-ponged synthesizers which 
provide hopped uplink and downlink Local Oscillator frequencies in response to tuning commands 
received from the EHF Modem. The RSU is implemented entirely with dedicated hardware, not 
only for the synthesizers but also for control and status functions. 

The EHF Antenna Pointing and Control Unit (APCU) provides parts of the antenna pointing 
control loop and stabilization algorithms and amplifiers to drive the azimuth and elevation motors in 
the antenna assembly. The APCU is based on a microprocessor but also contains analog servo 
amplifiers and synchro resolvers, etc. 

The Inertial Data Assembly (IDA) is a slightly modified existing inventory strap-down INS system 
mechanically coupled to the antenna pedestal. It provides three-axis heading information to the 
antenna pointing algorithms in the TAC. 

The EHF Power Amplifier (EHFPA) and the High Voltage Power Supply (HVPS) are a pair of 
LRUs which provide final power amplification of the uplink EHF waveform using a traveling 
wave tube (TWT). The microprocessor-based HVPS interfaces to the TAC and provides the 
control functions and operating voltages for the EHFPA. 

The EHF Antenna/Pedestal assembly provides the steerable antenna system for the uplink and the 
downlink signals. The complex includes a three-axis gyro assembly, a low noise amphfier/down- 
converter, a conical scan drive, and elevation and azimuth servos and synchros. 
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The UHF Equipment Group, not included with all terminal configurations, consists of the 
following major LRUs. The UHF Modems (2) provide waveform processing for most existing 
UHF SATCOM modes, plus adding a new Demand Assigned Multiple Access capability. The 
UHF Modems are comprised of microprocessor controllers and a variety of special purpose analog 
and digital cards. 

The UHF Receiver/Transmitters (UHF R/T) (2) provide the RF portion of the UHF uplink and 
downlink chain. They are existing inventory ARC-121 units. 

The UHF Power Amplifiers (UHFPA) (1 or 2) provide final power amplification of the UHF 
transmitted signals. Existing tube-type HPAs or newly designed solid-state HPAs are used 
depending on the platform type. 

The UHF Matrix (UHFMA) provides a controller for a suite of relays which permit linking 
combinations of UHF R/Ts, Modems and HPAs, and tuning interfaces between the UHF Modems 
and the HPAs. The matrix is based on a microprocessor, a set of relay drivers and dedicated 
hardware to support the tuning interfaces. 

4.2.2 MILSTAR Built-in Test 

4.2.2.1  BIT  Status  Collection 

The MILSTAR BIT is distributed among the LRUs. The LRU status is periodically collected and 
processed in the TAC and BBP to determine whether a condition exists which warrants a report to 
the operator or maintainer. Figure 4.2.2.1-1 shows an overview of the MILSTAR BIT status 
collection process, while each phase of the collection is described in more detail below. 

LRU1 

LRU2 ___»YDRIVER\. 

LRUn 

Figure 4.2.2.1-1.    MILSTAR Terminal BIT Status Collection Flow 
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4.2.2.1.1 LRU   BIT 

Most LRUs contain independent BIT comprised of hardware-based detectors and firmware-based 
tests and analysis. All LRUs with microprocessors or processors execute a power-up test 
sequence, and in addition periodically sample and collect all their internal hardware fault detectors. 
Each LRU also monitors interface status to other LRUs including the senal control/status interface 
to the TAC or BBP All fault status is accumulated and retained until sent to the lAUüöf, at 
which time the internal LRU accumulation is cleared. In cases where there is no direct LRU status 
connection to the TAC/BBP, (e.g., the HPA or the antenna /pedestal assembly), the outlying 
LRU(s) will report status through another LRU which has a TAC or•BBP «atusmterface. The 
more sophisticated microprocestor-based LRUs such as the EHF Modem the UHF Modems, he 
APCU and the TFS also provide a repertory of off-line tests which may be commanded over the 
control interface. 

4.2.2.1.2 On-Line LRU  Status Collection 

Each major MILSTAR LRU connects to the TAC or BBP via a dedicated full duplex serial 
communications link called the System Control Interconnect (SCI). The SCI is used by the 
terminal software executing in the TAC/BBP to initialize and control the LRUs and receive 
operational and BIT status messages. In general, LRUs do not send unsolicited messages to the 
TAC/BBP- rather fault status is "or" accumulated Internally until it is sent to the 1AC/BBF in 
response to a received message. Some LRUs, such as the EHF Modem, provide preprocessing 
and reduction of the raw status prior to transmission. LRUs are polled for fault status at set 
intervals and whenever an operational message exchange is necessary. 

In addition to fault information provided by the LRU, the interface driver for each LRU collects 
fault status from the TAC/BBP serial interface hardware (e.g., parity, overrun, break detect, etc.) 
and adds protocol-related status determined by software (e.g., incorrect message format or byte 
count, response time-out, etc.). The total status for each LRU, consisting of the LRU-generated 
status and the interface driver status, is "or" accumulated in a small table specific to each LRU. 
The update interval for the local LRU tables vary from 20 milliseconds to 1 second, depending on 
the message rate dictated by terminal operational needs. 

The TAC and BBP software also collect hardware-based status internal to those LRUs and 
accumulate the status in local tables. Both processors also execute background diagnostics such as 
ROM check-sums and RAM tests and enter the results in their respective tables, along with critical 
status from the operating systems. In addition, a number of on-line loop tests and test channels 
provide continuous confirmation of the cryptographic subsystems and the EHF Modem (at both the 
digital and RF levels). Any failures noted by these tests are also accumulated in status tables. 

Once every five seconds the LRU-specific tables are written into a global fault table (GFT), which 
contains a sub-space for all the local status associated with each LRU. At that time all local LRU 
tables are cleared and the GFT, which contains close to 500 bits of fault status, is passed to the 
BIT processing for evaluation. 

4.2.2.1.3  Off-Line Testing and Status Collection 

There are approximately 30 off-line tests which may be requested by the operator or maintainer, 
either individually or in groups of test sequences to exercise a particular subsystem of the terminal. 
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These tests include complete TAC and BBP self-tests, self-tests for each "smart" LRU, and a 
variety of loop tests which exercise a wider variety of paths than are possible on-line. 

During and after the execution of each on-line test, status is collected in a manner similar to on-line, 
and the results written to a global off-line results table analogous to the GFT used on-line. Tests 
may self-terminate if interim status indicates that continuation of the current test or further tests in 
an automatic sequence may be invalid or hazardous. Test results and isolation messages are sent to 
the maintenance screens. 

4.2.2.2    BIT  Status Processing 

The MILSTAR terminal processes the Global Fault Table data to determine whether a fault report is 
necessary, and to aid in fault isolation. The processing is table driven to facilitate upgrades during 
integration and as field experience is accumulated. 

As shown in Figure 4.2.2.2-1, the BIT reduction and processing is table driven. Each of the 500 
fault status bits contained in the GFT has a corresponding set of entries in the BIT Processing 
Table (BPT) which specify a fault precedence, values of N and M for discrimination, validation 
parameters (if applicable), a reporting severity parameter, certain isolation information, and 
pointers to a set of ASCII strings containing the appropriate screen and log messages if a fault 
report is generated. 

Once each five seconds, fault status is collected from the local LRU tables into the GFT, where it is 
forwarded to the BIT processing. The processing of the GFT data is shown in Figure 4.2.2.2-1, 
and described below. 

Figure 4.2.2.2-1.    MILSTAR BIT Processing Flow 

4.2.2.2.1  Fault  Prioritization 

The first phase of the processing scans the bits of the GFT in a hierarchical order according to the 
BPT, to determine the "highest" asserted fault symptom. The hierarchy is arranged based on two 
criteria. The first, and higher priority, criterion is to establish confidence in LRUs and functions 
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dosest to the operator displays and BBP, then work progressively back into the system. Aside 
from assisting with isolation, this approach helps reduce false alarms by ignoring fault reports 
from lower hierarchy units if higher units are reporting symptoms which potentially corrupt the 
reporting mechanism. For example, the BBP is at the top of the hierarchy; if it is faulty then any 
other status reports in the GFT are suspect. 

The second criterion is consideration of cases where a real failure in one hardware element 
nroDagates to multiple symptoms (collateral faults) potentially reported from multiple LRUs. An 
example of collateral fault propagation is a failure of the Time-Frequency Standard clock which 
causes activity and phase lock detectors to trip in multiple LRUs. For this reason the TFS is very 
high in the hierarchy. 

In a few cases the two fault priority criteria conflict. These cases we handled by a "look ahead" 
escape in the BPT which permits conditional branching on specified GFT status bits lower in the 
hierarchy For example, if the display serial port in the BBP is reporting a loss of reference clock, 
the BPT will specify looking ahead to certain TFS and EHF Modem faults to ascertain whether the 
problem is within the BBP or elsewhere in the system. 

The output of the fault prioritization is a determination of the highest fault symptom for the most 
recent five second processing interval. 

4.2.2.2.2 Fault  Discrimination 

The fault discrimination applies an N-of-M discriminator to the highest fault; that is, to pass 
discrimination the same highest fault must be present for at least N of the last M five second 
processing cycles. The discrimination processing will track N and M for up to twenty fault bits 
simultaneously. In the presence of multiple fault bits, the first fault to exceed discrimination is 
passed to the validation processing. The BPT can specify separate values for M and N for each of 
the 500 entries in the GFT. 

4.2.2.2.3 Fault  Validation 

For each fault bit to which validation is applicable, the BPT specifies a set of operational metrics 
such as received signal level, bit error rate, time-, frequency-, and spatial tracking loop metrics as 
appropriate. If the designated parameters are within proper operational limits (despite the potential 
failure) then the severity of the report generated to the operator is downgraded. In some cases a 
fault symptom may be downgraded to the point where it will not be reported to the operator if, 
based on performance metrics, it is deemed to have no impact on mission performance. The fault 
data is always logged to the fault log and is available via the maintenance screens, however. 

4.2.2.2.4 User  Interface 

The user interface processing generates fault report messages to the operator and maintainer. 
Faults are initially reported via the operational screens in one of three severity categories, according 
to data in the BPT: alarm, advisory, or log only. Since alarm messages are deemed urgent and 
invoke audible alarms and require explicit acknowledgment, they are reserved for fault reports 
which indicate a serious impact to terminal availability. Advisories inform the operator of potential 
degradation. The log-only category is reserved for symptoms which may require a maintenance 
action, but will not significantly impact mission operation. ASCII strings by the BPT provide fault 
isolation message strings and, where appropriate, a recommended off-line test to further evaluate a 
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problem. The user interface also provides a detailed set of maintainer screens and the ability to 
select and control off-line tests. 

4.2.2.2.5 Fault Logging 

In on-line mode, a fault message is sent to a logging file when ever there is a change in 
discriminated fault status, including the case where a fault may disappear. When running off line 
tests, the start and completion of a test and the resulting status is logged with no discrimination 
filtering. The log entries are time tagged and contain fault code and isolation strings. The log is 
automatically printed to hard copy by request or at terminal shut-down, or may be displayed in real 
time. 

As described in the following section, for the purposes of generating simulated fault report data to 
train and test the neural networks, a logically related subset of the MILSTAR LRUs was selected, 
consisting of the TAC/BBP, the EHF Modem, the RSU and the HVPS/HPA. Note that for 
simulation purposes the TAC and BBP are considered one LRU because they are so similar. 
Likewise, the HVPS and HPA are considered one LRU because they are functionally highly 
interrelated even though they reside in separate chassis. 

4.3 BIT Simulator 

This section describes the BIT simulator used to generate the training and test data for the neural 
network models. 

4.3.1  Simulation  Alternatives 

Two approaches were considered for the BIT simulator. The first approach would employ an 
existing MILSTAR simulator used by the software development facility to test and integrate 
MILSTAR software. The second approach would involve the development of a standalone 
simulator which would operate in a manner similar to the MILSTAR BIT processing. 

The existing MILSTAR simulator is illustrated in Figure 4.3.1-1. The simulation runs on a Data 
General host computer, and the MILSTAR operational software runs in a test bed which contains a 
subset of the real MILSTAR hardware. The simulation is controlled by a scripted scenario which 
specifies the simulated bit patterns to be generated for each Line Replaceable Unit (LRU). The 
existing BIT scenario is capable of generating simulated faults for only one LRU. Recorded data is 
available for simulated LRU interfaces and for the global fault table used by the terminal BIT 
processing software. 

The standalone simulator concept is depicted in Figure 4.3.1-2. In this approach, a single software 
component simulates a set of LRUs and BIT processing. The LRU simulations generate various 
fault signatures which are recorded in signature data files for processing and input to the neural 
network models. 

Although the MILSTAR simulator was already in place, the existing BIT scenario for the simulator 
would have to be extensively modified to provide the multiple LRU fault correlation and the fault 
signature modeling capability required for the neural network models. The standalone approach 
offered the advantages of better asset availability, direct control over the output data, and greater 
flexibility through a tailor-made application. After analysis of both approaches, the standalone 
simulator approach was selected. 
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Figure 4.3.1-2.    Standalone Simulator Concept 
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4.3.2  Simulator Description 
4.3.2.1   Overview 

The NNFAF BIT simulator is a software simulator based on the system BIT architecture of the 
MILSTAR satellite terminal. It is the component of the NNFAF software application which was 
used to generate fault signature data for training, testing, and validating the neural networks 
developed for the project. The simulator produces characteristic signatures for various FRC/BIT 
technique combinations. For each combination, signature data for false alarms, real faults, 
intermittents, and no faults can be produced. A block diagram of the NNFAF simulator is given in 
Figure 4.3.2.1-1. 
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Figure 4.3.2.1-1.    NNFAF Simulator Block Diagram 

For the purposes of the NNFAF project, it was not necessary to simulate the entire MILSTAR 
terminal. Instead, the simulation was limited to four MILSTAR terminal LRUs. Together, the 
selected LRUs form a representative and logically interrelated subset of the MILSTAR terminal 
The LRU selection process is described in detail in the following section. 
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4.3.2.2   LRU   Selection 

The goal of the LRU selection process was to select a representative subset of the MILSTAR 
LRUs which would be appropriate for the NNFAF demonstration. The selection process was 
based upon the following selection rules: 

1. The chosen subset of LRUs should be logically interrelated in the real system so that interaction 
between faults can be realistically simulated. 

2 The LRUs should represent all of the BIT status timing relationships used in the real system. 
At least one LRU should be selected from each of the following categories: Fixed-rate periodic 
status at the main BYT status cycle rate, fixed-rate periodic status at a higher rate than the main BIT 
status cycle rate, and random status rate determined by an event occurrence which is unrelated to 
the BIT status cycle. 

3. The LRUs in the real system should actually implement the following BIT techniques chosen 
for simulation: convolutional encoding/viterbi decoding, activity detection, and parity 
generation/parity checking. 

Based on the above rules, four LRUs were selected for the NNFAF BIT Simulator. Together, 
they perform most of the transmit and receive processing for the EHF portion of the real 
MILSTAR terminal. The LRUs are listed below, along with a description of the BIT cycle interval 
and the BIT technique applicability for each. The LRUs and their interrelationships are illustrated 
in Figure 4.3.2.2-1. The figure shows the roles of the units in actual transmit and receive message 
processing as well as the interfaces used for BIT processing. Only the BIT functions were 
implemented in the simulator. 

BIT Inffr 

Display 

TAC/BBP 

«*—  ► 
Data     ^ EHF 

Modem 
RcvlF RSU ^«Rcvd Downlin 

-«—1 Timing FreaCtrl _ 
from Antenna 

i 

BIT Interface 

i 

Keyboard 
Xmit 
Signal 

' ' 

BIT Interface HVPS/ 
HPA Printer 

Xmit Uplink j. 
to Antenna 

57 



1. Terminal Access Controller (TAC) and Baseband Processor (BBP). This pair of processors 
performs all of the software processing for the MILSTAR terminal, including terminal control, 
user interface, data routing, and BIT status collection and analysis. Since they operate as co- 
processors, they may be simulated by a single function. They contain a number of special-purpose 
input/output devices which are monitored and tested by BIT functions. BIT status is collected and 
accumulated each time a data transfer takes place through one of the devices in the normal course of 
operation. At the main BIT status cycle, the status of the input/output devices is collected and 
processed along with the all status for the terminal LRU hardware. BIT functions implemented in 
the TAC/BBP include activity detection and parity. 

2. EHF Modem. This LRU converts data from baseband format into the MILSTAR 
transmit/receive waveform. It receives frequency references from the RSU, and it provides timing 
to the TAC/BBP and sends frequency control values to the RSU. It collects and accumulates BIT 
status internally at various cycle rates, then transfers the status to the TAC/BBP at the main BIT 
status cycle. The EHF Modem implements activity detection, parity, and encoding/decoding. 

3. Receiver/Synthesizer Unit (RSU). Using frequency control values from the EHF Modem, the 
RSU synthesizes the frequencies used to generate the transmitted uplink signal to the High Voltage 
Power Supply and High Power Amplifier, and to downconvert the received downlink signal from 
the antenna. Once each main BIT status cycle, it collects BIT status from its internal hardware 
latches and transfers the status to the TAC/BBP. This LRU implements activity detection and 
parity. 

4. High Voltage Power Supply (HVPS) and High Power Amplifier (HPA). The HVPS generates 
the voltages and control signals used in the HPA. The HPA performs the final up conversion of 
the uplink signal from the RSU and amplifies it for transmission. The HVPS collects BIT status 
for both itself and the HPA, and sends this to the TAC/BBP once per second. The TAC/BBP 
software accumulates this status until the main BIT status cycle, then it is cleared and the process is 
repeated. Since the HPA is slaved to the HVPS, and only the HVPS interfaces with the 
TAC/BBP, the two units can be simulated as one function. Of the selected BIT techniques, only 
parity is implemented by the HVPS. 

4.3.2.3  Simulator  Functions 

The primary functions of the simulator are: 

1. LRU Simulation, including FRC/BIT Technique Simulation 
2. BIT Status Gathering and Accumulation 
3. Fault Generation 
4. Fault Signature Data Recording 

Each of these is discussed in detail in the following sections. 

4.3.3  LRU  Simulation 

4.3.3.1 EHF Modem Simulator 

The EHF Modem simulator shown in Figure 4.3.3.1-1 simulates the fault status accumulation and 
reporting performed by the EHF Modem LRU. It includes the Temperature/Viterbi Fault Report 
Cause/Brr Technique simulator which generates the fault reports. Fault reports are written to a 
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latch con-elated with other system faults, and recorded in the signature data files The latch holds 
any fault written to it until it is processed by the BIT processing function, at which time all faults in 
the latch are cleared. Inputs to the latch come from the Fault Report Cause/BIT Technique 
simulation and from the any correlated fault. When a BIT status request is received from the BIT 
status gathering and accumulation, the BIT processing function reads the latch, formats a Bli 
status report containing a single summary fault indication, and sends this report to the status 
gathering and accumulation mechanism. 
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Figure 4.3.3.1-1    EHF Modem Simulator 

4.3.3.1.1 Temperature/Viterbi FRC/BIT Technique Simulator 

This simulator produces characteristic fault signatures for the effects of temperature variations on 
BIT techniques using convolutional encoding and Viterbi decoding on a data stream. A random 
data stream is produced at a rate representative of hardware. A standard 1/3 rate, 3 stage 
convolutional encoding is applied to the data stream. A probabilistic corruption is applied to the 
encoded data stream as a function of temperature and failure threshold. The corrupted data is 
decoded by the simulated Viterbi decoder, and fault indications are provided for both correctable 
and non-correctable faults. A diagram of this simulator is shown in Figure 4.3.3.1.1-1. 
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Figure 4.3.3.1.1-1.    Temperature/Viterbi FRC/BIT Technique Simulator 

4.3.3.2  RSU  Simulator 

The RSU simulator shown in Figure 4.3.3.2-1 simulates the fault status accumulation and 
reporting performed by the RSU LRU. It includes the Temperature/Activity Detector Fault Report 
Cause/BIT Technique simulator which generates the fault reports. Fault reports are written to a 
latch, correlated with other system faults, and recorded in the signature data files. The latch holds 
any fault written to it until it is processed by the BIT processing function, at which time all faults in 
the latch are cleared. Inputs to the latch come from the Fault Report Cause/BIT Technique 
simulation and from the any correlated fault. When a BIT status request is received from the BIT 
status gathering and accumulation, the BIT processing function reads the latch, formats a BIT 
status report containing a single summary fault indication, and sends this report to the status 
gathering and accumulation mechanism. 
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4.3.3.2.1 Temperature/Activity Detector FRC/BIT Technique Simulator 

This simulator produces characteristic fault signatures for the effects of temperature variations on 
BIT techniques utilizing activity detectors. A random data stream is produced in which the data 
line transitions at least once in a representative time interval. A probabilistic corruption is applied 
to the data stream (the data is locked in one state for a period of time) as a function of temperature 
and failure threshold. A fault is produced if the data line fails to transition for a representative 
timeout period. A diagram of this simulator is shown in Figure 4.3.3.2.1-1. 
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Figure 4.3.3.2.1-1. Temperature/Activity Detector FRC/BIT Technique Simulator 

4.3.3.3  HVPS/HPA  Simulator 

The HVPS/HPA simulator shown in Figure 4.3.3.3-1 simulates the fault status accumulation and 
reporting performed by the HVPS/HPA LRU. It includes the G-Load/Parity Fault Report 
Cause/BIT Technique simulator which generates the fault .reports. Fault reports are written to a 
latch, correlated with other system faults, and recorded in the signature data files. The latch holds 
any fault written to it until it is processed by the BIT processing function, at which time all faults in 
the latch are cleared. Inputs to the latch come from the Fault Report Cause/BIT Technique 
simulation and from the any correlated fault. When a BIT status request is received from the BIT 
status gathering and accumulation, the BIT processing function reads the latch, formats a BIT 
status report containing a single summary fault indication, sends this report to the status gathering 
and accumulation mechanism, and records it in the signature data file. 
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Figure  4.3.3.3-1.     HVPS/HPA  Simulator 

4.3.3.3.1  G-Load/Parity FRC/BIT Technique Simulator 

This Simulator produces characteristic fault signatures for the effects of G-load on BIT techniques 
utilizing parity on a data stream. A random data stream is produced at a rate representative of 
hardware, and a parity bit is encoded onto each data word. A probabilistic corruption is applied to 
the encoded data stream as a function of G-load and failure threshold. The parity is recalculated on 
the corrupted data and a fault is produced when the parity check fails. A diagram of this simulator 
is shown in Figure 4.3.3.3.1-1. 
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Figure 4.3.3.3.1-1.     G-Load/Parity FRC/BIT Technique Simulator 
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4.3.3.4 TAC/BBP Internal Simulator 

The TAC/BBP internal simulator shown in Figure 4.3.3.4-1 simulates the fault status accumulation 
and reporting performed by the TAC/BBP internal LRU. It includes the Vibration/Parity Fault 
R™n<£ustfBYT Technique simulator which generates the fault reports. Fault reports are written 
toSch correlated with other system faults, and recorded in the signature data files  The latch 
holds any fault written to it until it is processed by the BIT processing function, at which time all 
faults S? theKare cleared. Inputs to the latch come from the Fault Report Cause/BIT Technique 
simulation and from any correlated fault. 

Vib 
Vibration/ 
Parity 

to Fault Correlation 

from Fault Correlation 

Latch TAC/BBP 
Status Gather & 
Accumulate 

to Signature 
Data Files 

Figure 4.3.3.4-1.    TAC/BBP Internal Simulator 

4.3.3.4.1 Vibration/Parity FRC/BIT Technique Simulator 

This simulator produces characteristic fault signatures for the effects of vibration on BIT 
techniques utilizing parity on a data stream. A random data stream is produced at a rate 
representative of hardware, and a parity bit is encoded onto each data word A probabilistic 
corruption is applied to the encoded data stream as a function of vibration and failure threshold. 
The parity is recalculated on the corrupted data and a fault is produced when the parity check tails. 
A diagram of this simulator is shown in Figure 4.3.3.4.1-1. 
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Figure 4.3.3.4.1-1.    Vibration/Parity FRC/BIT Technique Simulator 

4.3.4 BIT Status Collection and Accumulation 

This component simulates the action of the TAC/BBP software in gathering BIT status from the 
individual-LRUs and accumulating and storing the status into a single Global Fault Table (GFT) 
for analysis (see Figure 4.3.4-1). There are two BIT status cycles which are simulated. The main 
BIT status cycle is simulated to occur once every 5 seconds, and this parameter may be varied by 
the user. The HVPS/HPA status cycle is an intermediate status gathering point, and is simulated to 
occur once every second. Once each HVPS/HPA status cycle, the HVPS/HPA status is requested 
and stored into a latch. Once each main BIT Status cycle, the HVPS/HPA latch is read and stored 
into the GFT, and status from the other three LRUs is requested and stored into the GFT. If the 
main BIT status cycle rate is less than the HVPS/HPA status cycle rate, the HVPS/HPA status 
cycle rate becomes the main BIT status cycle rate. 
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Figure 4.3.4-1.    NNFAF Simulator BIT Status Collection and Accumulation 
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4.3.5 Simulated Fault Generation 

The primary functions of the each of the FRC/BIT Technique simulators are to simulate the 
generation of faults and to record fault signatures for use by the neural network models. Each run 
of the simulator consists of the generation of one or more fault signatures, based on an 
environmental profile and a set of user-selectable options. These options determine the 
characteristics of the simulation, including the shape and degree of random perturbation of the 
environmental profile, the level of the environmental input which will begin to produce faults, and 
the number of signatures that will be generated. Four options are available for failure threshold 
determination. These options allow the failure threshold to be varied automatically over many 
signatures in the run. The simulator options are described in detail in section 4.3.5.1. 

4.3.5.1  Simulator  Options 

1 Simulation Approach. This option provides for the selection of the simulation approach. The 
approaches are Temperature/Viterbi, Temperature/Activity Detect, G-Load/Parity, and 
Vibration/Parity. Based on this selection, the appropriate LRU simulation is performed. 

2. Environmental Profile Curve. The specific environmental profile can be selected from a list of 
environmental profile curve files. Only the curve files which pertain to the selected approach are 
displayed. A curve file contains environmental profile data consisting of normalized time (x axis) 
and normalized magnitude (y axis) values over a default period of time. 

3. Environmental Profile Curve Length. This parameter is a scale factor which, if selected, is 
applied to the time axis of the selected environmental profile curve. It determines the curve 
duration. 

4. Mean Perturbation. This parameter is used as the mean of a Gaussian noise distribution which 
is to be applied to the magnitude of the selected curve. It represents the average difference between 
the specified curve and the noise applied to the curve. 

5. Standard Deviation. This parameter is used as the standard deviation of a Gaussian noise 
distribution which is to be applied to the magnitude of the selected curve. 

6. Failure Threshold. This parameter represents the threshold of the environmental input at which 
faults will begin to be produced. 

7. Fixed Threshold. If this threshold option is chosen, the user specifies a single failure threshold 
value and a fixed number of signatures to be generated. 

8. Fixed Delta. If this threshold option is chosen, the user specifies a lower bound, a delta value, 
and an upper bound for the threshold value. Starting from the lower bound, one signature is 
generated for each delta until the upper bound is reached. 

9. Threshold Array. If this threshold option is chosen, the user enters the desired number of 
threshold values, that number of threshold values, and the desired number of signatures. The 
specified number of signatures will be generated at each threshold value. 

10. Random Thresholds. If this threshold option is chosen, the user specifies a lower bound, an 
upper bound, and a number of signatures. For each signature, a threshold value is generated with 
a random value between the lower and upper bound. 

65 



11. False Alarm/Intermittent Boundary. This parameter represents the boundary for levels which 
will be used to classify fault signatures. 

12. System Functional with Reporting Malfunction. If this parameter is selected, it is used to 
indicate that a fault report is occurring even though the system is fully functional. When this 
parameter is selected, all faults are classified as "BIT Only", and no correlated faults are generated. 

13. Timing Options. There are two timing options: Main BIT Status Cycle Rate, and Clock 
Granularity. The Main BIT Status Cycle Rate is used to modify the main status gathering and 
accumulation time period. The clock granularity is used to modify the periodicity of the simulator 
itself. 

14.. Seed Random Number Generator. This parameter selects a seed for the random number 
generator. This parameter is used to assure both replicability and uniqueness of experiments. 

4.3.5.2 Fault Signature Data 

Fault signature data is recorded into four distinct data files. One file contains fault data from the 
source of the fault, one file contains data from the intermediate (HVPS/HPA or LRU) status level, 
one file contains data from the main BIT status (GFT) level, and one file contains a combination of 
all fault bits from the GFT. The HVPS/HPA is the only LRU that has an intermediate status level, 
so this file is primarily of interest to the G-Load/Parity approach. However, the HVPS/HPA status 
may potentially contain a correlation fault for another approach. For this reason it is stored for all 
approaches. The intermediate status level can be simulated for the other approaches by shortening 
the main BIT status cycle rate. Figure 4.3.5.2-1 shows the flow of data to the various signature 
data files. 

Each entry in a fault signature data file contains a time tag, the fault indication, and the value of the 
appropriate environmental data at that point in simulated time. Examples of each level of fault 
signature data files can be found in Appendix G. 
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Figure 4.3.5.2-1.    NNFAF Fault Signature Data Recording 

5. DEVELOPMENT METHODOLOGY 

5.1 Hardware Platform 

The hardware platform for the NNFAF demonstration is as shown in Figure 5.1-1. The 
simulation software was developed on a Personal Computer (PC) 386, in the ANSI standard C 
language. This platform was selected because of its availability to the software developer. The 
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neural network, user interface, and all other support software was developed on a Sun IPX 
platform, with the configuration shown in the figure. The Sun was selected as the preferred 
platform for the majority of the software development because it was to be the final demonstration 
platform at the customer site. The simulation software was ported to the Sun platform after its unit 
test was complete. The final delivery and demonstration platform was the Sun Workstation at 
Rome Laboratory. 

RAYTHEON COMPANY 

ROME LABS 

• Sun Sparestation 330 
• 32 MB RAM 
• Sun OS 4.1 + 
• Open Windows 2.0+ 
• NeuralWare Professional 
II/PLUS S.0+ 

Delivery/Demo Platform 

■ Sun Sparestation IPX 
■ 32 MB RAM 
■ Sun OS 4.1.3 
■ Open Windows 2.0+ 
■ Kernighan/Ritchie C 
■ NeuralWare 5.0+ 

■ Professional II/PLUS 
■UDND 
- Designer Pack 

PC 386 
ANSI C 

• Simulator S/W 
Development (C) 

• NN S/W Development (C) 
• GUI S/W Development (X) 
• System Integration (NN + 
GUI + Simulator) 
• Build Demo Executable 

Figure 5.1-1.    NNFAF Development and Delivery Hardware Platforms 

5.2 Software and Software Tools 

The NNFAF software consists of the following items: 

• the Commercial Off-The-Shelf (COTS) software used to develop the neural 
networks; 
• the custom software developed to provide a graphical user interface, a data simulator, and 
neural network modeling and data processing capability. 

The following sections describe these items in more detail. 

5.2.1 NeuralWare Software 

The COTS software used for the NNFAF project consisted of the neural network development 
software by NeuralWare. This software is made up of three distinct products: 

• NeuralWorks Professional II/PLUS which is the main neural network development tool.   It 
allows the user to build, train, refine, and deploy neural networks. 
• NeuralWorks User Defined Neuro Dynamics, which allows the user to create custom-designed 
neural network architectures within the framework of the NeuralWorks environment. 
• NeuralWorks Designer Pack, which provides a neural network deployment capability. 
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5.2.2  Custom  Software 

The NNFAF custom software consists of the Human-Machine Interface, the Simulation Software, 
and the Neural Network Modeling and Data Processing Software. The software system block 
diagram is shown in Figure 5.2.2-1. 
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Figure 5.2.2-1.    NNFAF Software System Block Diagram 

5.2.2.1 Human-Machine Interface 

The Human-Machine Interface, also called the Graphical User Interface (GUI) is an X-windows 
application It was written using the Sun OpenLook Intrinsics Toolkit, in the C language. It 
consists of a main menu with submenus for executing the NNFAF simulator and the NNFAF 
demonstrations. The NNFAF Software Design Document and Software Users Manual contain 
detailed descriptions of the NNFAF GUI and representations of the NNFAF windows. The basic 
function of the GUI software are to display software identification information, to receive and 
process user input, and to present selection options which allow the user to execute either the 
simulator or the neural network demonstrations. 

The windowing environment of the NNFAF demonstration is a multi-window environment. At 
any time, there may be multiple windows present on the display, including one or more console or 
shell windows for Unix access, windows for Sun Workspace functions, the NNFAF windows, 
and/or the NeuralWorks windows. The user has unrestricted access to any of these windows at 
any time. 
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5.2.2.2 Simulation   Software 

The functions of the simulation software have been described in Section 4.3. The software was 
written in the C language. It is described in detail in the NNFAF Software Design Document and 
Software Users Manual. 

5.2.2.3 Neural Network Modeling and Data Processing Software 

The neural network modeling software was developed in the C language to implement neural 
network capability not provided by the NeuralWorks products. The neural network data 
processing software was developed in the C language to provide formatting, analysis and plotting 
capability for the neural network input and output data. 

The data processing software is used to format the fault signature data output from the simulator. 
Each neural network model requires that the training and testing data be in a certain format. The 
data processing software manipulates the signature data so that it is compatible with the given 
neural network model. There are three data formatters, one for each type of neural network in the 
NNFAF demonstration system. In addition to the input data formatters, software was also 
developed to format and present the network results. 

This software is provided off-line, and is not accessible through the NNFAF GUI. It is 
documented in the NNFAF Software Design Document and Software Users Manual. 

5.3 Software Development Methodology 

The Neural Network False Alarm Filter software was developed using a tailored DOD-STD-2167A 
(2167A) approach. The Statement of Work tailored 2167A such that only the following 
paragraphs were applicable: 

• Software Development Management, paragraphs 4.1, 4.1.1 (a-d) only; 
. • Software Engineering, paragraph 4.2, excluding paragraphs 4.2.2, 4.2.3, 4.2.5, 

4.2.6, 4.2.8, 4.2.9, 4.2.10; 
• Preliminary Design, paragraph 5.3, excluding paragraphs 5.3.1, 5.3.2.4, 5.3.3, 
5.3.4, 5.3.5; 
• Detailed Design, paragraph 5.4, excluding paragraphs 5.4.1, 5.4.2.4, 5.4.2.5, 
5.4.3, 5.4.4, 5.4.5. 

A non-deliverable, informal Software Development Plan (SDP) was written to define the software 
process for the NNFAF program. A non-deliverable, informal Software Requirements 
Specification (SRS) was also written to define the requirements for the software. The Preliminary 
Design portion of the Software Design Document (SDD) was completed for the user interface and 
simulator portions of the software. The detailed design for the software was completed in 
increments. A version of the Simulation Software was designed and coded, containing all basic 
functionality. A second version was then designed and coded, including additional capabilities. 
The Interface Software was initially designed and coded, but was expected to evolve throughout 
the life of the program. The neural network data processing software was also developed in 
increments to accompany the incremental development of the neural networks. 

A draft Software User's Manual (SUM) and draft R&D Test Plan (Demo Plan) were developed 
during the Preliminary Design phase of software development. The SUM and Demo Plan were 
updated throughout the life of the program. 
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5.4 Neural Network Development Methodology 

The general neural network development methodology consisted of 5 steps: 

1. Understand the simulated data, including its format, content, and how to generate it using the 
various simulator parameters. . . 
2. Format the simulated data into training, testing, validation, and noise testing files for input to 
the network. . 
3. Construct, optimize, train and test the network using NeuralWorks. 
4. Perform validation and noise testing using NeuralWorks. 
5. Collect and analyze network results. 

For each approach, one or more networks were developed and exercised. Individual 
methodologies for each approach are discussed in the individual sections that follow. 

Validation data is a term used by NeuralWare, Inc. to identify a neural network input data set 
which the network has never seen before. Validation data is distinguished from training or testing 
data both of which are repeatedly shown to the network during network training and optimization. 
NeuralWare's terminology for the different data sets was adopted for this project. Note that the 
validation data was used as the acid test of network performance only. Validation did not entail 
validation of the fault model or simulation concepts. 

5.4.1 Approach  1:  Backpropagation/G-load/Parity 

Approach 1 applied the Backpropagation neural network model to the Parity BIT technique, 
affected by a G-load fault report cause. Figure 5.4.1-1 shows a visualization of the simulated G- 
load event, overlaid with an example of a fault report signature for this approach. The duration ot 
the G-load event was defined to be 1 minute (60000 msec) and a corresponding G-load 
environ lental curve file was generated (see Appendix F). The parity BIT simulator for this 
approach is described in section 4.3.3.3.1. It was designed to produce a BIT report every 200 
msec. 
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BIT   Report   Cycle   200   msec.   GLoad   Event   1   min. 

'igure 5.4.1-1.    Simulated G-Load Event with Parity BIT Fault Signature 
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5.4.1.1  Network  Model  Overview 

The Backpropagation network model is one of the most mature, well-known neural networks. It is 
a supervised network model, which means it must know the desired output for every input pattern. 
It is usually a three-layer network, as shown in Figure 5.4.1.1-1. 
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bias 6 

OUTPUT LAYER: 
m nodes 

HIDDEN 
LAYER: 
n nodes, n x m 
connections 

INPUT LAYER: 
q nodes, q x n 
connections 

Figure 5.4.1.1-1.    A Backpropagation Network Architecture 

The number of nodes in the input layer is determined by the number of inputs to the network The 
number of output nodes is typically defined by the number of classes that the network must learn to 
identify. The number of hidden nodes is determined empirically or heuristically, usually by trying 
several different numbers and testing to determine which is best. Briefly, the operation of a basic 
Backpropagation network is as follows: 

There are two modes of operation, training and testing. In training mode, random real-valued 
weights are assigned to each connection in the network. An input data pattern is presented to the 
network and passed through each layer to the output layer, where the network's output is 
calculated. The error between the actual output and the desired output is determined at each output 
node. Using a gradient descent algorithm (the delta rule), the error is back propagated through the 
network, adjusting weights. This process is repeated many times (epochs) for all of the training 
patterns in the training data set. At the end of the training phase, the weights are saved to be used 
for testing. In testing mode, the weights are not changed. The network is run in a single pass 
through each testing pattern. The pattern is presented to the network and passed through each layer 
to the output layer where the output at each node is calculated. The values at the output nodes 
constitute a classification, with the maximum value corresponding to the best estimate of 
identification. Typically the output classes are defined using a 1 of n method, where each node 
represents one class and is expected to take on a value of 1 when that class has been identified 
When there are clear distinctions between classes, one node will have a value significantly higher 
(and closer to 1) than the other nodes. That maximum value corresponds to the network 
classification. See the Backpropagation network tutorial in Appendix I for more information about 
this network. 
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The Backpropagation model has been applied to many problems involving pattern classification 
However it was not expected to perform well for the problem of recognizing patterns which 
represent'streams of fault reports over intervals of time. It was selected during the down selection 
because it has many characteristics which made it a suitable choice, such as maturity, stability, 
reliability, and reasonable software size and throughput requirements. It is the most well- 
supported model of the NeuralWare, Inc. network tool set. It was also interesting to determine 
how well it would perform in this situation. 

5.4.1.2 Input Data 

Input data (fault signature data) was generated using the BIT simulator for the G-Load/Parity 
approach, and the G-load curve shown in Figure 5.4.1-1. Three sets of fault signatures were 
generated for training, testing, and validation, for each of the three levels of simulated BYT fau t 
reporting (source, LRU, and GFT). Each set contained 100 of each of the 4 classes. The fault 
signatures for the different classes were generated by varying the Failure Threshold BIT Simulator 
option. The validation data sets were put aside and were not used during network development, 
training, or testing. 

The format of the signature files can be seen in the examples in Appendix G. After they were 
generated they were post-processed into a form suitable for input to the Neuralworks 
Backpropasation network using a utility which was written for that purpose. Some of the network 
input files were made with just the BIT fault reports as input. Other input files were constructed to 
contain both BIT fault reports and corresponding G-load curve values to simulate enhanced 
environmental information. 

At the source level of BIT fault reporting, the G-Load/Parity fault signatures contained 300 
simulated parity BIT status reports (G-load event duration 60000 msec / BIT reporting cycle 200 
msec). The number of network inputs was therefore 300 for BIT status reports only, and 600 for 
BIT reports with corresponding G-load data value. 

At the LRU level of BIT fault reporting, the signatures contained 60 BIT status reports (G-load 
event duration 60000 msec / BIT reporting cycle 1000 msec). The number of network inputs was 
therefore 60 for BIT status reports only, and 120 for BIT reports with corresponding G-load data 
value. 

At the GFT level of BIT fault reporting, the signatures contained BIT status reports from all of the 
simulated BIT devices. There were 12 groups of BIT status reports (G-load event duration 60000 
msec / BIT reporting cycle 5000 msec) with 5 reports in each group. The number of network 
inputs was therefore 60 for BIT status reports only, and 120 for BIT reports with corresponding 
G-load data value. 

Noise testing data was also generated using the BIT simulator's Mean and Standard Deviation 
options. The Mean and Standard Deviation parameters were applied to the original G-load curve 
file data during BIT simulator execution, resulting in a perturbed G-load curve. This was done to 
simulate data which would be sufficiently different from the original data that the network's 
robustness and generalization capabilities could be tested. Several data sets containing varying 
degrees of noise were generated, as shown below. 
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Mean Value Standard Deviation Values 
.1 .1, .5, .9 
.5 .1, .5, .9 
.9 .1, .5, .9 

5.4.1.3 Network Design Optimization, Training and Testing 

Networks needed to be built for all different numbers of inputs. For this approach, there were 2 
networks built at each BIT reporting level, one for BIT status reports only, and the other for BIT 
reports with enhanced environmental information. 

Building a Backpropagation network using the NeuralWorks Professional II/PLUS tool is very 
automated. Using a graphical interface, the architecture of the network is defined, input file names 
are identified, and network training and testing can be automatically performed. 

Initial experiments were performed to determine the optimal network design. These experiments 
focused on the number of hidden nodes, but also varied network parameters such as learning rate 
and momentum. Network learning rules were also varied, using some of the set provided by 
NeuralWorks. 

The best design was determined by building a network, setting parameters, and using the 
NeuralWorks' "Savebest" option to automatically perform iterative training and testing while 
saving the "best network so far". Savebest operates as follows: the training portion consists of 
randomly presenting patterns from the training data set and performing the backpropagation 
training as described above. Once every preset number of pattern presentations, a test pass is 
performed. The test pass consists of presenting each pattern in the testing data set to the network 
once. The overall percent correct classifications is calculated, and if the current network 
configuration outperformed all of the others, it is saved. 

The design optimization process resulted in 6 networks. Their architecture definitions are given 
below. The NeuralWorks default settings for learning rate, learning rule, and momentum were 
used unless otherwise noted. 

Table 5.4.1.3-1.    G-Load/Parity Backpropagation Networks 

Network 
Architecture 

(Input-Hidden-Output) 
Non-Default 

Setting 
Source Level, fault reports only 300-20-5 None 
Source Level, fault reports + environment data 600-25-5 None 
LRU Level, fault reports only 60-17-5 Momentum=.2 
LRU Level, fault reports + environmental data 120-15-5 Learn Rate=.5 

Momentum=8 
UF1 Level, fault reports only 60-25-5 None 
Uh 1 Level, fault reports + environmental data 120-25-5 None 

5.4.1.4 Network Validation and Noise Testing 

Once the network design was finalized, the validation was performed.  Validation consisted of 
running the validation data set through the network once. The raw network results (written to a file 
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by NeuralWorks) were then processed to extract certain measures of network performance using a 
utility written for that purpose. The measures of performance are discussed in Section 6, Neural 
Network Results. 

Noise testing was also performed in the same way. Each noise test file was run through the 
network once, and the raw results were processed to extract the overall percent correct 
classifications. See Section 6 for results. 

5.4.2 Approach 2: Backpropagation/Vibration/Parity 

Approach 2 applied the Backpropagation neural network model to the Parity BIT technique, 
affected by a Vibration fault report cause. Figure 5.4.2-1 shows a visualization of the simulated 
vibration event, overlaid with an example of a fault report signature for this approach, lne 
duration of the vibration event was defined to be 2 seconds (2000 msec) and a corresponding 
vibration environmental curve file was generated (see Appendix F). The parity BIT simulator for 
this approach is described in section 4.3.3.4.1. It was designed to produce a BIT report every 20 
msec. 
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Figure 5.4.2-1.    Simulated Vibration Event with Parity BIT Fault Signature 

5.4.2.1 Network  Model  Overview 

The Backpropagation network model was used for this approach.   It is described in Section 
5.4.1.1. 

5.4.2.2 Input Data 

Input data (fault signature data) was generated using the BIT simulator for the Vibration/Parity 
approach, and the Vibration curve shown in Figure 5.4.2-1. Three sets of fault signatures were 
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generated for training, testing, and validation, for each of the three levels of simulated BIT fault 
reporting (source, LRU, and GFT).  Each set contained 100 of each of the 4 classes. The fault 
signatures for the different classes were generated by varying the Failure Threshold BIT Simulator 
option. The validation data sets were put aside and were not used during network development 
training, or testing. 

The format of the signature files can be seen in the examples in Appendix G. After they were 
generated, they were post-processed into a form suitable for input to the NeuralWorks 
Backpropagation network using a utility which was written for that purpose. Some of the network 
input files were made with just the BIT fault reports as input. Other input files were constructed to 
contain both BIT fault reports and corresponding vibration curve values to simulate enhanced 
environmental information. 

At the source level of BIT fault reporting, the Vibration/Parity fault signatures contained 100 
simulated parity BIT status reports (vibration event duration 2000 msec / BIT reporting cycle 20 
msec). The number of network inputs was therefore 100 for BIT status reports only, and 200 for 
BIT reports with corresponding vibration data value. 

At the LRU level of BIT fault reporting, the signatures contained 2 BIT status reports (vibration 
event duration 2000 msec / BIT reporting cycle 1000 msec). The number of network inputs was 
therefore 2 for BIT status reports only, and 4 for BIT reports with corresponding vibration data 
value;. (Thls was not enough input data to allow the network to make any meaningful 
classifications, as discussed below.) 

At thf G51,1T^el °f BIT fault rePorting> Ae signatures contained BIT status reports from all of the 
simulated BIT devices. There was 1 group of BIT status reports (vibration event duration 2000 
msec / BIT reporting cycle 5000 msec) with 5 reports in each group. The number of network 
inputs was therefore 5 for BIT status reports only, and 10 for BIT reports with corresponding 
vibration data value. (This was not enough input data to allow the network to make any 
meaningful classifications, as discussed below.) 

Noise testing data was also generated using the BIT simulator's Mean and Standard Deviation 
options. The Mean and Standard Deviation parameters were applied to the original vibration curve 
tile data during BIT simulator execution, resulting in a perturbed vibration curve. This was done 
to simulate data which would be sufficiently different from the original data that the network's 
robustness and generalization capabilities could be tested. Several data sets containing varying 
degrees of noise were generated, as shown below. 

Mean Value 
.01 
.03 
.05 
.1 
.5 

Standard Deviation Val ues 
.01, .1 
.01, .1 
.01, .1 

.1, .5, .9 

.1, .5, .9 

5.4.2.3 Network Design, Optimization, Training and Testing 

As for the previous approach, networks needed to be built for all different numbers of inputs   For 

nniSvaKH0tt' if W??r2 netWOrks ?uilt *< each BIT rePortinS level> one for BIT «atüs reports only, and the other for BrT reports with enhanced environmental information. 
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Initial experiments were performed to determine the optimal network design, using the 
Neu?alWo?k?Backpropagatk>n network builder, and the Savebest option for training and testing. 
Th^experiments focus^ on the number of hidden nodes, but also varied network parameters 
such as learning rate and momentum. Network learning rules were also varied, using some of the 
set provided by Neural Works 

The design optimization process resulted in 2 networks for the source level of BIT fault reporting. 
Their arcWte?ture definitions are given below. The NeuralWorks default settings for learning rate, 
learning rule, and momentum were used unless otherwise noted. 

Table 5.4.2.3-1.    Vibration/Parity Backpropagation Networks 

Network 
Source Level, fault reports only 
Source Level, fault reports + environment data 

Architecture 
(Input-Hidden-Output) 
 100-5-5  

200-5-5 

Non-Default 
Setting 

None 
None 

The amount of information in the higher level fault signatures was not enough to be used as valid 
network input. Experiments were performed at the LRU level to determine the minimum number 
of inputs which would produce meaningful network classifications, and the required BIT status 
reporting cycle rate. At a BIT status report cycle rate of 50 msec, a signature with 40 fault reports 
was sufficient for good classifications. 

5.4.2.4 Network Validation and Noise Testing 

Validation for this approach was only done with the source level networks. As in the previous 
approach, validation consisted of running the validation data set through the network once. The 
raw network results (written to a file by NeuralWorks) were then processed to extract certain 
measures of network performance using a utility written for that purpose. The measures ol 
performance are discussed in Section 6, Neural Network Results. 

Noise testing was also performed in the same way. Each noise test file was run through the 
network once, and the raw results were processed to extract the overall percent correct 
classifications. See Section 6 for results. 

5.4.3 Approach 3: SPR/Temperature/Activity Detector 

Approach 3 applied the SPR neural network model to the Activity Detector BIT technique, affected 
by a Temperature fault report cause. Figure 5.4.3-1 shows a visualization of the simulated 
temperature event, overlaid with an example of a fault report signature for this approach. The 
duration of the temperature event was defined to be 20 minutes (1200000 msec) and a 
corresponding temperature environmental curve file was generated (see Appendix F). The activity 
detector BIT simulator for this approach is described in section 4.3.3.2.1. It was designed to 
produce a BIT report every 20 msec. 
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Figure 5.4.3-1.    Simulated Temperature Event with Activity Detector BIT Fault 
Signature 

5.4.3.1  Network  Model  Overview 

The SPR network is less well-known than Backpropagation. It is a network which has been used 
to recognize sequences of events and is therefore suited to time-varying problems such as BIT false 
alarm filtering. It is provided on the NeuralWorks network builder menu. Its architecture, as 
implemented in NeuralWorks, is shown in Figure 5.4.3.1-1. There is a normalized input layer, 
connected to a set of "detection chains" which appear as rows in the figure. Each row represents 
the path to an output node, which in turn represents a data class. The path to the output passes 
through time slices, which are the columns in the figure. The input is presented in normalized 
form to the network, and is passed through each time slice in what is called an "avalanche" of 
activity through the detection chain. The output node with the highest value (closest to 1) 
represents the network's classification of the input pattern. This is also a supervised network, so 
that desired outputs must be presented to the network along with the corresponding input pattern. 
Learning takes place using a Kohonen-based learning rule. See the SPR network tutorial in 
Appendix I for more information about this network. 

The SPR model has been applied to certain classification problems such as repetitive signal 
recognition which involve viewing a data pattern as a series of temporal events. Initially, it was an 
alternate to the Backpropagation Through Time (BPTT) network, which was the primary candidate 
for this approach. BPTT is not provided by NeuralWorks, but NeuralWorks provides the 
capability to construct and run external networks within their development environment. 
However, the underlying network execution mechanisms in the tool did not lend themselves to 
building BPTT networks within time and budget constraints. Therefore, the alternate SPR was 
used. 
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One Row for each Class 
One Column for each Time Slice 

Class A 

Class B 

^-k 
Normalized Inputs 

Figure 5.4.3.1-1.    The NeuralWorks SPR Network Architecture 

5.4.3.2 Input Data 

Input data (fault signature data) was generated using the BIT simulator for the Temperature/Activity 
Detector approach, and the temperature curve shown in Figure 5.4.3-1. Three sets of fault 
signatures were generated for training, testing, and validation, for each of the three levels of 
simulated BIT fault reporting (source, LRU, and GFT). Each set contained 100 of each of the 4 
classes. The fault signatures for the different classes were generated by varying the Failure 
Threshold BIT Simulator option. The validation data sets were put aside and were not used during 
network development, training, or testing. 

The format of the signature files can be seen in the examples in Appendix G. After they were 
generated, they were post-processed into a form suitable for input to the NeuralWorks SPR 
network using a utility which was written for that purpose. Some of the network input files were 
made with just the BIT fault reports as input. Other input files were constructed to contain both 
BIT fault reports and corresponding temperature curve values to simulate enhanced environmental 
information. 

Initially, at the source level of BIT fault reporting, the Temperature/Activity Detector fault 
signatures contained 60000 simulated parity BIT status reports (temperature event duration 
1200000 msec / BIT reporting cycle 20 msec). The number of network inputs (60000) was 
prohibitively large. The BIT simulator for this approach was modified to collect running sums of 
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the number of simulated BIT device faults for 200 msec periods. The sum value was then written 
to the fault signature file. This resulted in a source level fault signature which contained 300 BIT 
status reports (1200000 / 20 / 200). The number of network inputs was therefore 300 for BIT 
status reports only, and 600 for BIT reports with corresponding temperature data value. The same 
process was performed for the LRU and GFT levels. 

Noise testing data was also generated using the BIT simulator's Standard Deviation option. The 
standard deviation was applied to the original temperature curve file data during BIT simulator 
execution, resulting in a perturbed temperature curve. This was done to simulate data which would 
be sufficiently different from the original data that the network's robustness and generalization 
capabilities could be tested. Several data sets containing varying degrees of noise were generated, 
with standard deviation set to .01, .05, .10, .20, .30, and .50. 

5.4.3.3 Network Design Optimization, Training and Testing 

Networks needed to be built for all different numbers of inputs. For this approach, there were 2 
networks built at each BIT reporting level, one for BIT status reports only, and the other for BIT 
reports with enhanced environmental information. 

Building an SPR network using the NeuralWorks Professional n/PLUS tool is also automated to 
some degree. Using the graphical interface, the architecture of the network can be defined and 
input file names can be identified. The Savebest option is not available for SPR nets. However, 
NeuralWare provides an off-line utility called Automate that allows a user to script training and 
testing scenarios which mimic the Savebest process. Automate was used to automate SPR 
network training and testing. 

Initial experiments were performed to determine the optimal network design. These experiments 
focused on determining the optimal number of time slices, whether or not to allow automatic 
normalization of the network inputs, and how many times to run an input pattern test. SPR 
network training, testing, and validation is significantly different from all of the other networks in 
the method of input pattern presentation. Each pattern must be presented individually, and the 
pattern test must be cycled several times while the network settles on the result. Patterns to be 
presented were placed in individual input files. Since the Savebest option was not available, 
Automate was used to load a network, present one input file, cycle the testing, and continue to the 
next input file until all patterns had been presented. For every input file, NeuralWorks produced a 
raw results file. These files were processed by a custom-built utility, to determine which were the 
best-performing networks. 

The design optimization process resulted in 6 networks, each with 300 inputs, using 3 time slices 
(100 BIT reports each) and 4 classes. The automatic polar normalization was always beneficial so 
it was used for all networks. All other settings were defaults. 

5.4.3.4 Network Validation and Noise Testing 

Validation for this approach was done as described above for training/testing. Individual patterns 
were presented as input files, raw result files were generated by NeuralWorks and then processed 
to extract certain measures of network performance using a utility written for that purpose. The 
measures of performance are discussed in Section 6, Neural Network Results. 
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Noise testing was also performed in the same way. Each noise test pattern file was run through the 
network test cycle, and the raw results were processed to extract the overall percent correct 
classifications. See Section 6 for results. 

5.4.4 Approach 4: REINFORCE/Temperature/Viterbi Decoder 

Approach 4 applied the REINFORCE neural network model to the Viterbi Decoder BIT technique, 
affected by a Temperature fault report cause. Figure 5.4.4-1 shows a visualization of the simulated 
temperature event, overlaid with an example of a fault report signature for this approach. The 
duration of the temperature event was defined to be 20 minutes (1200000 msec) and a 
corresponding temperature environmental curve file was generated (see Appendix F). The Viterbi 
decoder BIT simulator for this approach is described in section 4.3.3.1.1. It was designed to 
produce a BIT report every 20 msec. 
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Figure 5.4.4-1. Simulated Temperature Event with Viterbi Decoder BIT Fault 
Signature 

5.4.4.1 Network Model Overview 

The REINFORCE network is more experimental than the other two. It is not provided within the 
NeuralWorks tool framework. It is a more adaptive model which fits into the reinforcement 
learning category of networks: it does not require the desired output to be presented with the input 
pattern. Theoretically it could learn "on-line", without previous supervisory training. Its general 
architecture is shown in Figure 5.4.4.1-1. 

Basic operation of a REINFORCE network is as follows: In training mode, an input pattern is 
presented to the network (it comes in from the environment, or the network's external world). As 
the input pattern is presented to each network input node, the node outputs a value which 
represents its action in response to the input. These actions, or activations, pass through the 
network from input side to output side.  After all the nodes at the output side have output their 

81 



action, (the resulting classification), the environment calculates an evaluation (reinforcement) 
according to the particular network input pattern. Each node then responds to the reinforcement by 
changing its internal state according to some specific function of its current state, its output, its 
input, and the reinforcement. The precise manner in which the reinforcement signal is used 
depends on the learning algorithm which is applied. In the typical case, the reinforcement signal is 
broadcast to all nodes. In testing mode, the reinforcement from the environment is removed. The 
network receives input, passes the input through to the outputs, and the result is the network 
classification. The number of outputs determines how the result is formulated. See the 
REINFORCE network tutorial in Appendix I for more information about this network. 

The REINFORCE model had not been applied to many real-world classification or other problems. 
It was selected during the down selection because it had the potential to perform well with temporal 
data, it would not present unreasonable storage or timing requirements, and it appeared to be more 
well-defined and documented than other theoretical techniques which were under consideration. 

ENVIRONMENT 

Outputs 

t 
Feedforward 
Connections 

Reinforcement 

(Context) 
Inputs 

Figure 5.4.4.1-1.    A General REINFORCE Network Architecture 

5.4.4.2 Input Data 

Input data (fault signature data) was generated using the BIT simulator for the Temperature/Viterbi 
Decoder approach, and the temperature curve shown in Figure 5.4.4-1. Three sets of fault 
signatures were generated for training, testing, and validation, for each of the three levels of 
simulated BIT fault reporting (source, LRU, and GFT). Each set contained 100 of each of the 4 
classes. The fault signatures for the different classes were generated by varying the Failure 
Threshold BIT Simulator option. The validation data sets were put aside and were not used during 
network development, training, or testing. 
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The format of the signature files can be seen in the examples in Appendix G. After they were 
generated, they were post-processed into a form suitable for input to the REINFORCE network 
using a utility which was written for that purpose. Since the environmental data was used in 
calculation of the reinforcement signal, it was not added to the fault signature files. Initially, there 
were the same network input size problems as the SPR network. The Viterbi Decoder BIT 
simulator generated two-bit fault reports for this approach, since the Viterbi Decoder can output 3 
values (0=no fault, l=error detected and corrected, 2=uncorrectable error). At the source level of 
BIT fault reporting, the Temperature/Viterbi Decoder fault signatures contained 1200000 simulated 
Viterbi Decoder BIT status reports (temperature event duration 1200000 msec / BIT reporting cycle 
20 msec * 2 fault bits). The number of network inputs (1200000) was prohibitively large. The 
BIT simulator for this approach was modified to collect running sums of the number of simulated 
BIT device faults for 400 msec periods. The sum value was then written to the fault signature file. 
This resulted in a source level fault signature which contained 300 BIT status reports (1200000 / 
20 * 2 / 400). The number of network inputs was therefore 300. The same process was 
performed for the LRU and GFT levels. 

Noise testing data was also generated using the BIT simulator's Standard Deviation option. The 
standard deviation was applied to the original temperature curve file data during BIT simulator 
execution, resulting in a perturbed temperature curve. This was done to simulate data which would 
be sufficiently different from the original data that the network's robustness and generalization 
capabilities could be tested. Several data sets containing varying degrees of noise were generated, 
with standard deviation set to .01, .05, .10, .20, .30, and .50. 

5.4.4.3 Network Design Optimization, Training and Testing 

Since the REINFORCE network was not provided by NeuralWorks, NeuralWare's User Defined 
Neuro-Dynamics (UDND) product was used to incorporate the REINFORCE network's 
mathematical and other computational functions into the structure of the NeuralWorks development 
environment. A function was defined for four critical network node calculations: sum, output, 
transfer function, and learning. 

Once the new network functions were incorporated into the NeuralWorks tool framework, the tool 
could then be used to build, train, and test the networks. As for the previous approaches, 
networks needed to be built for all different numbers of inputs. For this approach, there was 1 
network built at each BIT reporting level. Initial experiments were performed to determine the 
optimal network design, using the Savebest option for training and testing. These experiments 
focused on the calculation of the reinforcement signal, the layering of the network (whether or not 
to use hidden nodes), the connectivity of the network, the number of classes and class 
representation, and learning rate. The design optimization process resulted in 3 networks, one at 
each level of BIT fault reporting. Each had 300 inputs, 0 hidden nodes, and 1 output node, with a 
learning rate of .01. The network classification at the one output node was designed as a range of 
values from 0 to 1, with empirically determined thresholds to mark the delimitation between the 
four classes. A reinforcement function was defined that utilized the temperature data along with the 
number of faults in the input pattern. 

5.4.4.4 Network Validation and Noise Testing 

Validation consisted of running the validation data set through the network once. The raw network 
results (written to a file by NeuralWorks) were then processed to extract certain measures of 
network performance using a utility written for that purpose. The measures of performance are 
discussed in Section 6, Neural Network Results. Noise testing was also performed in the same 
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way. Each noise test file was run through the network once, and the raw results were processed to 
extract the overall percent correct classifications. See Section 6 for results. 

6. NEURAL NETWORK RESULTS 

This section presents the results of testing the performance of each of the neural networks using 
validation data (non-noisy) and using noisy data. The validation data sets were generated using the 
NNFAF BIT simulator. Uniqueness from any previously seen training or testing data was ensured 
by using the BIT simulator option to seed the random number generator with a different seed for 
the validation data. Data was generated for the three simulated levels of BIT fault reporting 
(source, LRU, GFT). Data was generated with and without additional environmental information. 

The noisy data was generated using the NNFAF BIT simulator. Different amounts of noise were 
applied to the data by manipulating the BIT simulator standard deviation option. The amount of 
noise applied to the data sets differed from approach to approach. Generally, the amounts of noise 
can be categorized as low or moderate. They are described within the individual approach sections 
which follow. 

The noise-test results presented in each of the following sections indicate the amount of noise 
perturbation applied to the data. The amount of perturbation was calculated using the L2 norm: 

2I  
V X(f-n2+Xf2 

where f is the original data value and f is the perturbed value. 

Three measures of goodness were defined to describe the performance of each network. They are 
summarized in Table 6-1. Parameters PI and P2 distinguish between fault reports which do or do 
not require a repair action. Those which require a repair action encompass both Intermittent and 
Hard Failures. Those that do not require a repair action encompass both No Faults as well as False 
Alarms. In the False Alarm case, a fault report is generated but it should not result in any repair 
action. The two parameters reflect network false alarm filtering capability as well as the ability to 
recognize and report a failure. Parameter P3 represents the overall network performance, i.e., how 
well it was able to correctly classify each of the fault report signatures in the validation data set. 

Table 6-1.    Neural Network Performance Measures of Goodness 

Goodness 
Parameter 

PI 

P2 

P3 

Description 
Percent Correctly Classified as Requiring a 
Repair Action 

Percent Correctly Classified as Not Requiring 
any Repair Action 

Overall Percent Correct 

How Calculated 
(Total Correct Intermittent + 
Total Correct Hard Fault) / 
Total Intermittent + Hard Fault in 

Test Data Set 
(Total Correct No Fault + 
Total Correct False Alarm) / 
Total No Fault + False Alarm in 

Test Data Set 
(Total Correct No Fault + 
Total Correct False Alarm + 
Total Correct Intermittent + 
Total Correct Hard Fault) / 
Total in Test Data Set 
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In the sections that follow, the network results are presented using classification matrices (also 
known as confusion matrices). An example is shown in Figure 6-1. The matrix columns contain 
the actual network classifications, and the rows contain the desired classifications. The column 
and row headers contain class id abbreviations (NO = No Fault, FA = False Alarm, INT = 
Intermittent, and HA = Hard Fault). The top-left-to-lower-right diagonal contains the correct 
network classifications for each class. Any entry which is not on this diagonal is a 
misclassification. The total number of fault report signatures in the data sets was typically 400, 
with 100 of each class. Therefore, the values in the matrices represent both actual quantities as 
well as percentages. 

Actual Classification 
NO FA INT HA 

c 
c NO 100 
a 
c 

'v. FA 98 2 
CZ 

Q 
-o INT 100 

CD 
u HA 100 

Figure 6-1.    Example Network Classification Matrix 

6.1 Approach 1 (Backpropagation/G-Load/Parity) Results 

6.1.1 Validation Test Results 

The validation test results for Approach 1 are shown in Figures 6.1.1-1 through 6.1.1-3. Results 
are presented both without and with enhanced environmental information. Figure 6.1.1-1 presents 
the results at the source level of BIT fault reporting, Figure 6.1.1-2 shows the results at the LRU 
level, and Figure 6.1.1-3 shows the results at the GFT level. All results are quite good; the LRU 
level is slightly better than the source level, and significantly better than the GFT level especially at 
distinguishing between intermittent failures and false alarms. The inclusion of environmental data 
in the network input was slightly beneficial at all levels of reporting. 
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Figure 6.1.1-1. Validation Results Approach 1, Source BIT Reporting Level 
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Figure 6.1.1-2. Validation Results Approach 1, LRU BIT Reporting Level 
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BacKpropagation Met: 
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Backpropagation Net: 
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Figure 6.1.1-3.    Validation Results Approach 1, GFT BIT Reporting Level 

6.1.2  Noise  Test  Results 

Fieures 6 1 2-1 through 6.1.2-3 show the results of noise testing for Approach 1. The addition of 
noise to the test data significantly affected network performance. For this approach large 
perturbations of the data were possible, most likely because the characteristics of the G-Load event 
are very different from the noise which was added. As was seen for all network modefc, the 
backpropagation network was always able to correctly classify No Faults and Hard Faults, so that 
the netwofk performance leveled off at approximately 50% overall correct classifications 
regardless of the amount of noise added. The addition of environmental data was; shghtly 
beneficial to network performance with noisy data, especially at the LRU level of BIT reporting. 
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Figure 6.1.2-1.    Noise Testing Approach 1, Source BIT Reporting Level 
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Figure 6.1.2-2.    Noise Testing Approach 1, LRU BIT Reporting Level 
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Figure 6.1.2-3.    Noise Testing Approach 1, GFT BIT Reporting Level 

6.1.3   Summary 

The backpropagation network performed surprisingly well with this approach, as indicated in the 
validation result figures. This was not initially expected, because backpropagation is not usually 
used with temporal data. We saw differences in performance across the different levels of Bl 1 
reporting most likely due to the amount of information in the data: the LRU level data seemed to 
have an optimal balance of information content, whereas the GFT level data was probably too 
compressed. We noted that the environmental enhancement was increasingly beneficial as the data 
became noisier. We concluded that the backpropagation network is a viable candidate tor future 
study in this problem domain. 
6.2 Approach 2 (Backpropagation/Vibration/Parity) Results 

6.2.1 Validation Test Results 

Figure 6 2 1-1 shows the results of the validation testing of Approach 2, for data without and with 
environmental information enhancement. Only source level results are provided, since there were 
no meaningful results at either the LRU or the GFT levels. The results are very good; the 
backpropagation network performed with 100% correct classifications on the previously unseen 
data. The inclusion of environmental data in the network input was slightly beneficial. 
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Figure 6.2.1-1.    Validation Results Approach 2, Source BIT Reporting Level 

6.2.2  Noise  Test  Results 

Figure 6.2.2-1 shows the results of noise testing for Approach 2. The addition of noise to the test 
data significantly affected network performance. For this approach, slight variations in noise 
caused wide fluctuations in performance, possibly because the network was unable to distinguish 
between the characteristics of the noise vs. the vibration event. As was seen for all network 
models, the backpropagation network was always able to correctly classify No Faults and Hard 
Faults until the amount of noise became excessive (at 16%). The addition of environmental data 
was slightly beneficial to network performance with noisy data. 
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Figure 6.2.2-1.    Noise Testing Approach 2, Source BIT Reporting Level 

6.2.3   Summary 

At the simulated source level of BIT fault reporting, results were very successful for the 
backpropagation network as it was applied to the parity BIT technique with a vibration fault report 
cause The results were so successful that there was only a slight improvement with the data 
which was enhanced with information about the vibration event. Results were not meaningful at 
the higher levels of fault reporting because of the brief duration of the simulated vibration event. 
At the higher levels of reporting, the source level BIT reports were compressed by 'onng them 
over the reporting period. The data was so compressed for this particular approach that at the LRU 
level of reporting, there were 2 fault report signatures per reporting cycle, and at the GFT level 
there was only one. This was not enough information for the network to be properly trained or to 
make meaningful classifications. 

The backpropagation network requires a certain amount of unique data in order to be properly 
trained. We saw that, in our simulations, certain types of information could only be seen within 
certain intervals of time. Therefore, we conclude that is critical to status the BIT fault reports 
within a long enough time window such that information about transient events (such as the 
vibration event in this approach) will not be lost due to data compression. 

6.3 Approach 3 (SPR/Temperature/Activity Detect) Results 

6.3.1 Validation Test Results 

The validation test results for Approach 3 are shown in Figures 6.3.1-1 through 6.3.1-3. Results 
are presented both without and with enhanced environmental information. Figure 6.3.1-1 presents 
the results at the source level of BIT fault reporting, Figure 6.3.1-2 shows the results at the LRU 
level, and Figure 6.3.1-3 shows the results at the GFT level. The SPR networks were not able to 
distinguish between No Faults and False Alarms, or between Intermittents and Hard Faults. The 
inclusion of environmental data was detrimental at all levels. The networks were able to separate 
the data into two categories which correspond to the PI and P2 measures of goodness. 
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Figure 6.3.1-1.    Validation Results Approach 3, Source BIT Reporting Level 
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Figure 6.3.1-3.    Validation Results Approach 3, GFT BIT Reporting Level 

6.3.2  Noise Test Results 

Figures 6 3.2-1 through 6.3.2-3 show the results of noise testing for Approach 3. The addition of 
noise to the test data had little impact on network performance, since all data was classified as 
either No Fault or the Hard Fault. 
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Figure 6.3.2-1.    Noise Testing Approach 3, Source BIT Reporting Level 
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Figure 6.3.2-3.    Noise Testing Approach 3, GFT BIT Reporting Level 

6.3.3  Summary 

The SPR network was the least successful of the three models which were investigated. It was not 
able to distinguish between the four classifications, at any level of BIT fault reporting. It was able 
to distinguish between reports which would require a repair action and those which would not. 
The addition of environmental data to the fault signatures did not improve the network 
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performance.   The performance of the network was slightly better at higher levels of BIT 
reporting. Noise testing augmented the deficiencies. 

We believe that the SPR network failed to perform well because of the large number of network 
Spute At the source level, the number of network inputs was 300 The addition of environment 
Zf only increased the number of inputs, and was therefore not of benefit. At the higher levels of 
faXeportmg, the number of inputs was slightly less and the performance of the network wa 
sStlvimproved. Subsequent discussions with the vendor revealed that the network was 
typkaUy Sed with an order of magnitude less inputs (typically 10-20), although they knew of no 
architectural or computational reason for poor performance with larger numbers. 

We concluded that SPR is a poor performer in this problem domain. 

6.4 Approach 4 (REINFORCE/Temperature/Viterbi) Results 

6.4.1 Validation Test Results 

The validation test results for Approach 4 are shown in Figures 6.4.1-1 and 6.4.1-2. Figure 
6 4 1-1 presents the results at the source and LRU levels of BIT fault reporting. Environmental 
data enhancement was not added to the fault report signatures for this approach because 
environmental information was used in the calculation of the network reinforcement signal Figure 
6 4 1-2 shows the results at the GFT level. The results are very good. The REINFORLb 
networks were 100% correct in all classifications at all levels of reporting. 
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Figure 6.4.1-1. Validation Results Approach 4, Source/LRU BIT Reporting Level 
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Figure 6.4.1-2.    Validation Results Approach 4, GFT BIT Reporting Level 

6.4.2  Noise Test  Results 

Figures 6.4.2-1 through 6.4.2-3 show the results of noise testing for Approach 4. Although the 
addition of noise to the test data affected network performance, in comparison to the other models, 
the REINFORCE networks seemed to be the most tolerant of noisy data, especially at the GFT 
level of reporting. As was seen for all networks, the REINFORCE networks were always able to 
correctly classify No Faults and Hard Faults. 
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Figure 6.4.2-1.    Noise Testing Approach 4, Source BIT Reporting Level 
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Figure 6.4.2-2.    Noise Testing Approach 4, LRU BIT Reporting Level 
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Figure 6.4.2-3.    Noise Testing Approach 4, GFT BIT Reporting Level 

6.4.3   Summary 

The REINFORCE network was quite successful, performing with 100% correct classifications for 
ail vacation datt at all levels of BIT reporting. We concluded that it is also a viable candidate for 
future study in this problem domain. 
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7. IMPACT STUDY 

The purpose of the Impact Study was to assess the technical factors involved in the insertion of 
Neural Net False Alarm Filter technology into communications equipment, and to evaluate the 
resulting cost/benefit tradeoffs. 

The analysis was confined to organizational level maintenance only, i.e., insertion of the 
technology at the organizational level. Although neural network technology may be effective in 
intermediate or depot support equipment, this area was not examined. In addition, the Impact 
Study was only one aspect of the tasks undertaken on the NNFAF contract. As such, resources 
were limited. Consequently, the cost/benefit models and conclusions must be viewed as first-order 
approximations on which more detailed analysis could be based. 

Finally, due to the widely varying complexity and technologies of communications systems, it 
proved extremely difficult to draw any specific conclusions regarding neural network false alarm 
filter insertion without considering specific systems. 

7.1   Methodology 

The assessment of technical and cost/benefit impact was partitioned into System Components, 
System Maturity and Neural Network type. The partitioning may be viewed as a three-dimensional 
matrix, with major system components along one axis, system maturity along a second axis, and 
neural network type along the third axis (see Figure 7.1-1). 

IMPACT NR     R 

TOTAL "COST" 

BENEFTT NR    R 

TOTAL •BENEFIT" 

LOGIST 

MAT 

CURRENT 

MATURE 

CURRENT 

NEW 
COST/ 

BENEFIT 
(GENERIC) 

NEW 

COST/ 
BENERT 

(MILSTAR) 

NO. OF SYSTEMS 
OTHER VAR. 

Figure 7.1-1. Overview of Impact Study Methodology 

At the system component level, analysis was partitioned into three areas: the prime mission 
equipment (PME), the equipment platform, and the logistics/support system. Prime equipment 
includes the hardware and software which comprise the actual mission equipment, exclusive of 
platform-provided accessories or any O-level support equipment. Communication PME typically 
consists of RF components, modulator/demodulator subsystems, baseband user interfaces and 
some type of overall control function with operator interfaces. Impact to the PME may include 
additional processing and memory, additional BIT sensors, and additional or different software 
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The platform area examines impact to the platform on which the PME is mounted. Platform impact 
typically may include increased power, volume, weight and cooling requirements, and possibly 
additional wiring to connect to platform-based sensors (e.g., environmental measurement) which 
support the neural networks. 

The logistics and support system consists of the intermediate and depot support facilities, the 
spares supply system and related transportation and tracking methods, technical manuals and 
related procedures, maintainer personnel and training, etc. Although the effects of implementing 
neural networks at the maintenance facility level were not examined, one of the major savings 
resulting from reduced false alarms could accrue from reducing the occurrence of unnecessary 
removals which lead to costly Re-test OK situations at the lower maintenance levels. 

Recognizing that the cost and benefit of inserting NNFAF technology may vary considerably with 
the age of a system, the system maturity dimension was partitioned into three categories: Mature, 
Current and Future. Mature systems are those which have typically been in the field and in use tor 
more than seven or eight years. These systems are usually not highly processor-intensive, and 
likely were designed to less stringent BIT requirements than more recent systems. As a result, 
they may have insufficient BIT detector coverage and processing capacity to effectively implement 
neural network false alarm filtering without major expenses. 

Current systems are those which are through the design and testing phase and are just starting to be 
procured in quantity and fielded. Typically these systems are processor intensive and have 
reasonably good BIT coverage as a result of more stringent requirements. Since they have a 
relatively long life remaining, they are also likely to have opportunities to "piggyback the neural 
network false alarm filter insertion on other upgrades. 

Future systems are those which are just entering the design phase or are yet to be specified and 
designed These systems are likely to be highly processor-intensive. However, they also offer the 
opportunity to incorporate neural network false alarm filtering techniques early in the design 
process, rather than as a modification to existing hardware and software. 

The third dimension of partitioning encompassed the three neural network models 
(Backpropagation, REINFORCE and SPR) which were evaluated in this program. These models 
are described in Section 5.4. The network model or type influences throughput and memory 
burden and the expected improvement in False Alarm Reduction (FAR). The former influences the 
cost, while the latter influences the potential savings. 

In order to evaluate the impacts of NNFAF , a system of three linked Excel spreadsheets was 
developed. The Cost Model spreadsheet lists all the identified factors which may affect the cost of 
inserting neural network filtering technology into a system, and allows the entry of cost estimates 
against each factor. The Benefit Model spreadsheet prompts for the system parameters and factors 
which influence the expected savings resulting from implementing neural network false alarm 
filtering in a system. Both the cost and benefit sheets encompass the PME, Platform and Logistics 
domains. A third spreadsheet uses the cost and benefit data to graphically display the resulting 
trade-off space. The models and spreadsheets are described in detail in Section 7.2 below. An 
example of the Cost/Benefit Display spreadsheet is shown in Appendix H. 

As previously mentioned, the cost and benefit spreadsheets encompass the "system component" 
dimension of the matrix (see figure 7.1-1) by permitting entries categorized by PME, Platform and 
Logistics. Beyond that, the spreadsheets are not specifically tailored to the three maturity levels or 
the three neural network types. Instead, these categories influence the cost and benefit entries. 
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Hence a compete analysis of all points in the matrix would result in a set of three spreadsheets for 
each of the nine rows contained in the (NN type X Maturity) space of the matrix. However, it was 
deemed not necessary to perform any analysis for the SPR algorithm due to its poor performance. 
The REINFORCE and Backpropagation results are very similar, but there are differences in 
computational burden which will affect implementation cost. As an example of a specific current 
system, an analysis of the Air force MILSTAR Terminal system was performed, based on actual 
MTLSTAR technical and logistics data. 

7.2  Models 

7.2.1 Cost Estimation Model 

The cost model/spreadsheet prompts for cost estimate inputs associated with achieving a baseline 
FAR, typically the FAR already known to be achieved by the system. Using the number of 
systems (N) and a pair of complexity factors, the model estimates the costs at several points, 
spanning an order-of-magnitude improvement (lowering) of the FAR. The cost model and the cost 
spreadsheet partition the cost parameters associated with neural network false alarm filter insertion 
into four major categories. 

The first category consists of those cost factors which are essentially independent of incremental 
changes in the desired FAR and also independent of the number of systems (N), i.e., non- 
recurring costs. The second category consists of components which are still independent of FAR, 
but depend linearly on N (recurring costs). The third category includes costs which are expected to 
escalate with decreasing FAR, but are independent of N. The fourth category comprises costs 
which escalate with decreasing FAR and have a linear dependence on N. Viewed another way, the 
total estimated cost associated with a given FAR has a non-recurring component, part of which is 
independent of the FAR and part which varies with FAR, and a recurring component, part of 
which is independent of the FAR and part which varies with FAR. The total cost associated with a 
given FAR is the sum of these four components. 

The cost growth factor as a function of decreasing FAR should have several characteristics. It 
should be equal to 1.0 when the FAR equals the baseline, or initial FAR; it should asymptotically 
approach infinity as the FAR approaches zero; and it should provide for a complexity factor which 
affects the growth rate. A simple growth function which meets these criteria is 

where 
G = (Fi/F)K (Eq.7-1) 

G is the growth factor 
Fi is the initial or baseline FAR 
F is the FAR variable, Fi>F>0 
K is the complexity factor 

Figure 7.2.1-1 shows the growth factor G as a function of changing F and K for an Fi of 20%. 
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Figure 7.2.1-1.   Cost Growth Factor as a Function of F and K 

Using the growth factor results in an equation for the total cost as a function of N, F, Fi, and K as 
follows: 

C (N,F,Fi,Kl,K2) = SI + NS2 + S3(F/Fi)Kl + NS4(F/Fi)K2 (Eq. 7-2) 

where 
C is the total cost 
N is the number of systems 
51 is the sum of the costs independent of both FAR and N 
52 is the sum of the costs independent of FAR but dependent on N 
53 is the sum of costs dependent on FAR but independent of N 
54 is the sum of costs dependent on both FAR and N 
Kl is the complexity factor associated with S3 
K2 is the complexity factor associated with S3 
F is the FAR variable 
Fi is the initial (baseline) FAR 

The two complexity factors, Kl and K2, are intended to allow tailoring of the spreadsheets to a 
wide variety of systems. Ideally, selecting appropriate values of Kl and K2 would be based on 
regression analysis of historical upgrade costs across a wide variety of system types. However, 
this type of task is well beyond the scope of the NNFAF contract. For the present, engineering 
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judgment is used to select values. Kl and K2 are user-entered parameters to facilitate future 
applications of the spreadsheet. 

Figure 7.2.1-2 shows an example of the individual (SI, S2, S3 and S4) cost curves and the 
resulting composite curve. The costs entered into the spreadsheet represent estimates to achieve a 
FAR of Fi. The positive Y-intercept shown in Figure 7.2.1-2 highlights the fact that there is a 
"cost of admission" to introduce neural network technology to a point which achieves the level of 
performance already available by some other means already in the system. For future systems this 
"cost of admission" will be minimal. 
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Figure 7.2.1-2.    Individual and Composite Cost Curves 

Based on the inputs and the model, the cost spreadsheet output is a set of costs for a range of FAR 
between Fi and O.lFi (i.e., one order of magnitude) at intervals of 0.1 Fi. This set of costs is an 
input to the Cost/Benefit Display Spreadsheet (see Section 7.2.3). 

7.2.1.1  Processing and  Memory Issues 

One of the key factors which will affect both hardware and software cost estimates is the 
processing throughput and memory needs associated with implementing neural network filters. 
Therefore this section provides some guidelines for estimating processing and memory 
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requirements. Note that in general it is necessary to perform the neural network processing in real- 
time while the system is running and performing all normal on-line tasks. 

Figure 7.2.1.1-1 shows the configuration assumed for the ith BIT detector for throughput and 
memory estimation. 
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Figure 7.2.1.1-1.     NNFAF Processing/Memory Burden Model 

During system operation, each bit detector (and associated collateral data such as environmental 
information) is accumulated in a buffer of length Li, where Li corresponds to the length of the 
signature appropriate to the selected neural network model. In a straightforward approach, every 
Li samples, a set of k neural network filters process the signature and determine whether there is a 
reportable fault. The k filters are needed because it is unlikely that one neural network can be 
trained to work effectively across a wide variety of false alarm signatures generated by differing 
causes. In effect, there is a bank of filters, each tuned to a different signature. For a given BIT 
detector, the outputs of the filters are ored across the set of filters, then ored with the accumulated 
outputs of filters associated with other detectors in the system to produce a fault report. 

This approach requires that all neural network filters in a system be running in real time during 
system operation. In large systems with many detectors, the resulting processing burden becomes 

103 



intractable. A more realistic implementation provides a pre-processor function for each detector 
which examines the buffer to determine whether it is necessary to perform false alarm filtering. 
This preprocessor may be as simple as detecting one or more positive fault indications in the 
buffer. If a fault indication is detected, the updating of the remaining buffers in the system is 
stopped to retain the entire state of the system fault status, and the neural network processing is 
invoked only for those buffers which have a fault indication present. 

With the above approach, during normal, non-faulted system operation, none of the neural 
network processing needs to run. More importantly, in most cases in the presence of a system 
problem, only a small portion (e.g., less than 10 %) of the detectors will report a fault. Therefore, 
only those filters which are necessary are invoked, minimizing the neural network processing 
burden. In addition, because the system BIT status is "frozen", the necessary neural network 
processing needs not execute in real time, but only needs to be completed within a specified fault 
latency time. Fault Latency, Tiat, is the time from the occurrence of a fault until it is reported to the 
user. A reasonable T]at is highly application dependent. For example, an Identify-Friend/Foe 
(IFF) system should have very short Tiat, typically less than two seconds. Communication 
systems can generally afford higher Tiat, on the order of 30 seconds or more. 

Note that if an overwhelming number of detectors have tripped, there is a high probability that the 
system is no longer operating, in which case allocating system processing to false alarm filtering 
has minimal impact. 

Clearly, processing burden will be highly dependent on the nature of the processing available. In 
general, the filtering will probably be done by software, although hardware integrated circuit 
implementations of Backpropagation are available (this subject is discussed further on in this 
section). In any case, the burden estimates are most conveniently normalized to a primitive 
operation. In the case of neural networks, the predominant operation is a multiply followed by an 
add, so multiply/add cycles are a convenient primitive. 

For a given neural network, the number of Multiply/add cycles is approximated by 

Mik-LiHik ( (Eq73) 

where 

Mik is the number of multiply/adds associated with the kth filter of the ith BIT 
detector 

Li is the number of samples in the buffer of the ith BIT detector (this also equals the 
number of input nodes) 

Hik is the number of hidden nodes in the kth neural network of the ith BIT detector 

This equation neglects the operations to compute the output nodes because the number of output 
nodes (4) is typically only a small fraction of the number of input nodes, which dominate the 
calculation The network transfer function (typically sigmoid) calculations need to be performed 
once per hidden node, and would likely be implemented via pre-computed table look-up 
techniques. Therefore the sigmoid calculations are also neglected. 

Using the equation above, the total throughput may be estimated by 

Rtot = P lilkMikAlat (Eq. 7-4) 
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where 

Rtot is the total Multiply/Add rate in operations per second 
P is the fraction of BIT detectors which are likely to indicate faults simultaneously 
Mik is the number of Multiply/adds associated with the kth filter of the ith BIT 

detector 
Tiat is the maximum permissible fault latency time 

To assess the order of magnitude of the processing burden, consider an example system with 1200 
BIT detectors, with an average of five neural network filters per detector. The filters average seven 
hidden layer nodes and 300 input nodes each (typical values). P is assumed to be 0.1, and Tjat is 
five seconds. Rtot is calculated to be 252,000 operations per second. 

Rtot estimates the burden independent of the technology. The translation of Rtot into Millions of 
Instructions per Second (MIPS) requires knowledge of the host processors. Modern processors 
may require only two or three machine instructions per multiply/add cycle, yielding a requirement 
well under one MIPS. Older technology, especially if hardware support for multiplication is not 
available, may well need hundreds of machine instructions for each operation, leading to a 
requirement on the order of 25 MIPS. The processing need not be performed in one processor, of 
course, and typically would be distributed among several processors in a system. 

The ith BIT detector requires enough RAM to store a signature Li bits in length. Summing over 
the BIT detectors yields the required memory in bits. For the above example, the memory 
requirement would be 360,000 bits or 45 Kbytes. This does not represent an extraordinary 
memory demand given recent RAM technology. 

RAM is also required to provide working storage as the network node values in each layer are 
calculated. For the Backpropagation network, however, as the hidden nodes are traversed, it is 
never necessary to store more than Li intermediate results. (The REINFORCE network used no 
hidden nodes). Furthermore, as soon as the output of one network is calculated and stored, the 
working storage may be used for the next network. Therefore, working storage requirements are 
limited to the maximum value of Li, at (typically) two to four bytes per location. This will be 
negligible compared to other memory requirements. 

The dominant factor in storage requirements is the memory to store the network connection 
weights. In the extreme case, the multiply portion of each multiply/add for each network may 
utilize a unique weight value. Hence, the total connection weight storage is equal to the total 
number of multiply/add operations. Note that unlike the calculation for the multiply/add rate, 
which assumed that only a fraction (P) of the filters would have to be executed, it is necessary to 
store all connection weight values. Hence the number of weights (Nw) is 

where 

Nw = B lilkMik (Eq. 7-5) 

Nw is the total storage requirement for connection weights in bytes 
B is the number of bytes per weight (two is generally sufficient) 
Mik is as defined in equation 7-3 
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For the example system, and assuming 2 bytes per weight, Nw is about 25 Megabytes. In all 
probability these weights would be stored in some form of Erasable, Programmable Read-Only 
memory (EPROM), albeit distributed through the system. While well within the bounds of present 
technology, this represents a significant amount of PROM, along with related power supply and 
cooling considerations. Magnetic storage is a possibility if system environmental and reliability 
constrains permit. However, access times associated with use of magnetic storage must be 
considered in the throughput calculations. 

Application-Specific Integrated Circuits (ASICs) which implement the Backpropagation algorithm 
are available from several manufacturers, and offer an alternative approach to inserting NNFAF 
technology. Throughput considerations indicate that each of these devices could support from 
approximately ten to fifty detectors. Therefore, a reasonable implementation might put one or two 
devices in each LRU or subsystem, with the outputs feeding a centralized processor which 
reduces the outputs to operator/maintainer messages. 

The use of such devices eliminates the need for the neural network "simulation" software, along 
with the associated development or procurement costs. In addition the devices are fast enough that 
real-time processing on-line would be possible, eliminating the need for pre-processing to 
determine which filters should run. 

However, there are a number of drawbacks. Insertion of additional distributed hardware raises 
replication costs while negatively affecting power, volume and reliability. This would be a strong 
consideration if a system already had sufficient reserve processing to implement software-based 
algorithms, or if there were a large number of systems involved. Given the rate of change in 
technology for ASICs, processors, memory, and neural networks, the suitability of hardware- 
versus software-based implementations must be considered on a case by case basis. 

7.2.1.2 Cost Model Inputs 

Table 7.2.1.2-1 lists the specific cost items identified and provides a brief explanation of each item. 
Note that some items allow for entries in more than one category (e.g., both independent of FAR 
and dependent on FAR) to accommodate situations where the cost may have both a dependent and 
an independent component. Also, the list of items is intended to be comprehensive and generally 
applicable to any system. Some specific systems may have zero cost associated with one or more 
of the items, depending on the system. 

Table 7.2.1.2-1.    Cost Spreadsheet Inputs 

 Input Parameter 
EQUIPMENT 

Description 

Engineering Feasibility Study 

Costs captured in this section are specific to the 
host system and exclude costs to the platform or 
logistics system. 
Non-Recurring Engineering (NRE) (Government) 
This study will determine the efficacy of a given 
approach to implementing NN. Average study 
runs from 6 to 12 MM in effort. Depending on the 
scope of the effort, will usually fall into the Cost to 
Implement NN category.  
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Table 7.2.1.2-1.    Cost Spreadsheet Inputs (continued) 

Input Parameter 
Define Requirements 

Issue RFP and Select Contractor 

Description 

Select NN Model 

Design H/W Equip Mods to NN 
Host 

Design S/W Mods to NN Host 

Design, Code and Test NN Model 

NRE (Government) to define what equipment 
changes have to be made in order to accommodate 
the NN approach.  
The NRE (Government) cost to create an initial 
RFP, advertise the contract and collect/evaluate 
proposals, including the final selection and kick- 
off. 
This NRE may be partially covered in the proposal 
process. It is the cost associated with performing 
trade-off studies for the various NN approaches. 
NRE for designing system HW changes required to 
implement NN. There may be a component which 
involves the additional costs (i.e. sensors, new 
processors, memory) to improve the FAR.  
NRE to design or modify the SW on the host 
system to incorporate NN. There may be a 
component which involves additional SW for 
sensors etc. to improve the FAR. 

Write Test Plans and Procedures 

Generate NN Training Data 

Training NN (initial) 

Procure New Hardware 

The NN will require developing SW tailored for 
each application. This NRE is the cost to develop 
(or acquire), code and test the SW required. The 
bulk of this cost is included in implementing NN, 
since few additional costs are needed for 
improvement of FAR 
NRE to cover the cost of developing HW and SW 
Test Plans and Procedures and any reviews. 
NRE to generate the initial data used to train the 
NNs. Initial data will likely require extensive 
analysis by system experts 
NRE labor for training the NNs using the generated 
data. 

Procure Spares for New Hardware 

Install H/W Mods to Incorporate 
NN 
Install S/W Mods to Incorporate 
NN 

This is the cost of procuring any new hardware for 
the host system to accommodate the NN. There 
may be both NRE and recurring components. 
Mostly specific to improving FAR 
The per system cost to purchase spares for new 
hardware. Considered initial NN startup cost, but 
may have FAR improvement costs. 
The per system cost to install new and/or modify 
existing system hardware to incorporate NN 

Install NN Software 
Update        Existing 
Documentation 

S/W 

The per system cost to install or modify existing 
system software to incorporate NN. 
The per system cost to install the NN software. 
Self explanatory 
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Table 7.2.1.2-1.    Cost Spreadsheet Inputs (continued) 

Input Parameter 
Update Existing H/W and System 
Documentation 
Prototype Integration and Test 

Self explanatory. 
Description 

Regression Testing 

Acceptance Test for Each System 
Sell-Off Test 

PLATFORM 
(ANCILLARY IMPACT) 

Site Survey 

Design Platform Modifications 
(volume, power, cooling, weight 
and balance, safety, etc.) 
Arrangements 
Platform 

for   Access   to 

Platform Modifications (System 
Specific)     • 
Installation Verification 

Update Platform Documentation 

Regression Tests 

The NRE cost to perform integration & initial 
testing of the BIT system with the NN 
incorporated 
The NRE cost to ensure that the original system 
capabilities have not been adversely impacted by 
installing NN 
Recurring cost of acceptance test for each system. 
NRE costs to perform sell-off tests of prototype 
system against revised specifications. 
Costs captured in this section relate to platform 
changes to accommodate the modified prime 
equipment 
NRE cost to assess platform changes necessary for 
installation of updated system. 
NRE cost to design modifications to the existing 
host platform for NN implementation. 

Recurring cost to get the platform to a place where 
modification and installation of the equipment can 
be performed. Applies only if installation cannot 
be performed as part of or in parallel with some 
other modification. 
Per  System  costs  to  alter  the  platform 
accommodate NN within the host system 

to 

NRE Cost to verify the installation is correctly 
performed. 
NRE Cost to update technical orders, manuals, and 
other changes to the platform as a result of NN. 

PLATFORM 
(NN SPECIFIC) 

Site Survey 

"Design Platform Modifications 
(volume, power, cooling, Weight 
and Balance, safety, etc.)"  

NRE cost to ensure the platform ancillary systems 
were not adversely affected by the installed 
modification. 
Costs captured in this section relate to platform 
changes to accommodate NN equipment outside the 
prime mission equipment (e.g., platform 
environmental sensors). 
NRE cost to assess platform changes necessary for 
installation. 
NRE cost to design modifications to the existing 
platform specific to the host system for NN 
implementation. 
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Table 7.2.1.2-1.    Cost Spreadsheet Inputs (continued) 

Input Parameter 
Arrangements   for   Access   to 
Platform 

Platform   Modifications    (NN 
Specific) 
Installation Verification 

Update Platform Documentation 

Regression Tests 

LOGISTICS 

Analyze Equipment Mods for 
Logistic Concerns (Reliability, 
LSA, etc.)  
Specify and Procure System for 
Training/Retraining of NN. 

Plan  and Install Mechanism to 
Collect and Analyze Historical 
Data 

Description 
Cost to get the platform to a place where 
modification and installation of the equipment can 
be performed. Applies only if the cannot be 
performed as part of or in parallel with some other 
modification and not already covered above, 
Per System Costs to accommodate NN external to 
the host system 
NRE Cost to verify the installation is correctly 
performed 
NRE Cost to update technical orders, manuals, and 
other changes to the platform as a result of NN, 
NRE cost to ensure the host system was not 
adversely affected by the installed modification 
This section identifies the various support tasks and 
logistics disciplines which may be required to 
support NN. 
Safety, reliability, maintainability, maintenance 
procedures modifications, human factors analysis, 
etc. are all covered in this NRE cost. 
The cost for procuring computer hardware and 
software required for gathering maintenance data, 
creating new NN parameters, and distributing the 
changes. 
Plans and installation costs for equipment and 
procedures procured an previous step. Includes all 
testing, verification, validation, etc 

Arrange Access to Equip to Perform 
S/W Update 

Per System Cost to perform the update to the NN 
software. 

Collect Historical Data for Re- 
training 

This is the lifetime cost per system for periodically 
sending the fault data to the central data bank for 
processing. Assumed to be more often during first 
five years, and then tapering off, 

NN Retraining (Periodic) Costs associated with analyzing collect data and 
periodically generating and distributing revised 
Neural Nets. 

Distribute Retrained Networks This is the lifetime cost per system of distributing 
the retrained networks to each system Assumed to 
be more often during first five years, and then 
tapering off. 

Technical Order Updates Cost of updating the technical manuals for operator 
and maintenance procedure changes, part number 
changes, and other documentation not already 
covered. 
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Table 7.2.1.2-1.    Cost Spreadsheet Inputs (continued) 

Input Parameter 
Modify Training Courses 

Modify Support Equipment 

Description 
NRE cost to accommodate any changes required in 
existing or developing training courses as a result 
of NN installation and modifications to the 
platform. 
NRE cost of Organizational Support Equipment 
changes required as a result of NN implementation. 
Peculiar Support Equipment or Special Support 
Equipment changes should include Support 
Equipment Recommendation Data (SERD) costs, 
Logistics Support Analysis costs and the costs for 
verification/validation of procedures and tech 
manuals for that item. 

7.2.1.3 Cost Model  Outputs 

The output of the cost worksheet is a set of ten cost values representing the total costs for Fi and 
nine additional values of F down to O.lFi, calculated using Kl, K2 and N in accordance with 
equation 7-2. 

7.2.2 Benefit Estimation Model 

The primary quantifiable benefits associated with introducing NNFAF technology accrue from the 
reduced unnecessary maintenance actions and unnecessary mission aborts resulting from' an 
improved FAR. The benefit spreadsheet therefore prompts for parameters which affect the total 
expected number of failures over the system life and the costs associated with maintenance actions 
and missionaborts. These parameters include, among others, the system Mean Time Between 
failures (MTBF), the total number of installed systems, the cost of a maintenance action and the 
™s\ of a ?u

1?x
slon abort- The savi"gs is estimated based on reduced unnecessary repair actions 

( false pulls ) and mission aborts as the FAR improves. 

The savings attributable to reduced false pulls is 

Bfp = (NFi-NF)AfCf (Eq.7-6) 

where 

Bfp is the benefit (savings ) resulting from reduced false pulls in dollars 
NFi is the number of false alarms at FAR Fi (the baseline FAR) 
NF is the number of false alarms at the (improved) FAR F 
Af is the fraction of false alarms which result in an unnecessary remove/replace 

(false pull) 
Cf is the cost (in dollars) of a false pull 

The generally accepted definition of False Alarm Rate is 

110 



F=  NF/(NF + Nra) (Eq. 7-7) 

where 

F is the false alarm rate 
NF is the number of false alarms at FAR rate F 
Nra is the number of real alarms 

Solving equation 7-7 for NF yields 

NF = NraF/(l-F) (Eq.7-8) 

Similarly, 

NFi = NraFi/(l-Fi) (Eq.7-9) 

Substituting equations 7-8 and 7-9 into equation 7-6 results in 

Bfp = Nra Af Cf (Fi-F) / (l-FO(l-F) (Eq. 7-10) 

The total number of expected real alarms over the life of a system, Nra, may be estimated as 

Nra = (8760 DYN)/Tm (Eq.7-11) 

Nra is the total number of expected real failures over the life of a system 
"   D is the duty cycle, the average fraction of time the equipment is on 

Y is the expected remaining equipment life in years ■ 
Tm is the Mean Time Between Failures in hours 
8760 is the number of hours in a year 

Substituting equation 7-11 into equation 7-10 yields 

Bfp = 8760 D Y N Af Cf (Fi-F) / Tm (1-Fi)(l-F) (Eq. 7-12) 

Based on equation 7-12, the benefit (savings) associated with reduced mission aborts due to false 
alarms is 

Bma = 8760 D Y N Am Cm (Fi-F) / Tm (l-FO(l-F) (Eq. 7-13) 

where 
Bma is the benefit (savings) due to reduced mission aborts 
Am is the fraction of false alarms which result in a mission abort 
Cm is the cost (in dollars) of a mission abort 

The spreadsheet model estimates a total benefit (savings) by summing the individually identified 
benefits 

Btot = Bfp + Bma + Bon + NBor <&l- 7'14) 
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where 

Bon is a term to include any non-recurring savings not accounted for by Bfp and Bma 
Bor is a term to account for any recurring savings not accounted for in Bfp and Bma 

Bon and BGr are terms in the sum to include other quantifiable savings which are not attributable to 
reduced false pulls and/or reduced mission aborts. These savings are usually much smaller than 
Bfp and Bma, and may include such items as reduced spares (future systems only), reduced 
training, fewer tech order updates, etc. No attempt is made to explicitly identify the contributors to 
Bon and Bor, but provision is made on the spreadsheet for entry of these quantities to 
accommodate cases where such savings may be explicitly identified. 

Figure 7.2.2-1 is an example of individual and composite benefit curves for a FAR range of 20% 
to 2%. In the Figure, Bl represents Bfp, B2 represents Bma, and B3 represents the sum of B0n 
and Bor- 
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Figure 7.2.2-1.    Example Benefits (Savings)  Curves 
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7.2.2.1 Benefit Model Inputs 

Table 7.2.2.1-1 lists the specific benefit items input to the spreadsheet and provides a brief 
explanation of each item. 

Table 7.2.2.1-1.    Summary of Inputs to Benefit Worksheet 

Input Parameter 
Cost per Repair Action 

Average Cost per Abort 

Fraction of BIT Alarms Causing Maint 
Action  
Fraction of Alarms Causing Mission 
Abort 

Description 
Average cost ($K) per unnecessary repair 
action. Includes cost of shipping module to 
depot, cost of testing/verifying module and 
returning to spares 
Average direct cost ($K) of aborting a mission. 
Attributable to fuel, manpower, etc. 
Average fraction of BIT alarms which result in 
a maintenance action. Usually close to 1.0. 
Average fraction of BIT alarms causing a 
mission abort.    Highly system/application 

Other Non-Recurring 

Other Recurring 

dependent. 
Non-recurring cost savings attributable to other 
factors such a reduced spares, reduced T.O and 
training, etc. 
Recurring (per system) cost savings associated 
with other factors such as easier 
accommodation of other changes in the system. 

7.2.2.2 Benefit Model Outputs 
Based on the inputs and the model, the benefit spreadsheet output is a set of cost savings for a 
range of FAR between Fi and O.lFi (i.e., one order of magnitude) at intervals of 0.1 Fi. This set 
of savings is an input to the Cost/Benefit Display spreadsheet (see Section 7.2.3). 

7.2.3 Cost/Benefit Display Spreadsheet 

7.2.3.1  Cost/Benefit  Output  Model 

The Cost/Benefit Results spreadsheet uses the inputs from the cost and benefit spreadsheets and 
additional inputs from the user and plots the cost curve, the benefit curve and a net (benefit minus 
cost) curve for a range of FAR between Fi and O.lFi. Figure 7.2.3.1-1 shows an example of the 
resulting graphical output. Note that in this example the cost and benefit curves intersect at two 
points. At a FAR worse than about 15%, the "cost of admission" is not recovered. At a FAR 
better than about 1%, the exponentially increasing costs again exceed the (approximately) linear 
benefit curve. The Net curve shows a broad maximum around 6%, which in this example would 
be the optimum FAR to achieve. 

It is entirely possible that the cost and benefit curves never intersect, and the Net curve remains 
below zero for all values of FAR. This is indicative of a case for which neural network insertion 
would be of no benefit, at least from a Life Cycle Cost viewpoint. 
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Figure 7.2.3.1-1.    Example of Cost/Benefit Results Display 

7.2.3.2  Cost/Benefit  Display  Inputs 

Table 7.2.3.2-1 summarizes the user-provided inputs to the Cost/Benefit Display spreadsheet. 
Parameters needed by other spreadsheets are automatically passed as appropriate. 

Table 7.2.3.2-1.    Summary of Cost/Benefit Display Inputs 

MTBF 
Input Parameter 

Remaining Years of Service 

Description 
Average MTBF of system 
Expected remaining years during which system 
will be used and supported 

Fraction of BIT Alarms Causing Maint 
action 
Mission Duty Cycle 

Average fraction of BIT alarms which result in 
a maintenance action. Usually close to 1.0. 

Number of Systems 

Average fraction of time that systems are 
powered up. 
Number of fielded systems 

Initial FAR Fraction representing the initial (baseline) False 
Alarm rate (Fi) 
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7.2.3.3  Cost/Benefit Display  Outputs 

The Cost/Benefit output consists of a display with three major elements. A table showing Total 
Savings Costs and Net savings as a function of FAR is displayed. In addition, the same 
information on a per system basis (including spreading non-recurring costs across the N systems) 
is displayed. The per system costs are particularly useful to provide perspective to the total cost 
figures. The third element is a graphical representation of the cost, benefit and net curves plotted 
as a function of decreasing FAR. 

7.3  Results 

Using the spreadsheet tool to explore examples, it is possible to draw some general conclusions 
about the efficacy of neural network insertion at each maturity level. However, it must be 
emphasized again that there may be numerous exceptions to the general conclusions, and specific 
systems must be considered on a case-by-case basis. 

7.3.1  Mature  Systems 

In general, mature systems are unlikely to be good candidates for NNFAF technology insertion. 
They typically are not processor intensive, and lack sufficient reserve processing capacity to 
implement the requisite processing without expensive upgrades. In addition, because they often 
were designed to less stringent BIT requirements, they will lack sufficient BIT detectors to allow 
the NNFAF concept to work effectively. The need to add BIT sensors and processor/memory may 
cause significant (and expensive) platform impacts in terms of volume, weight cooling and power. 

Mature systems also have the least potential for realizing the benefits. The principal problem is that 
the benefits are "integrated" over a relatively short remaining system life. In addition, the NNFAF 
approach has the capability to improve over time through collection and analysis of data and 
periodic retraining. However, the short remaining life does not allow time for NNFAF techniques 
to yield maximum benefit. 

Mature systems may have mitigating factors which would allow a payback from neural network 
insertion. For example, some older systems have relatively high (e.g., greater than 25%) False 
Alarm rates, leaving substantial room for improvement on a portion of the cost/FAR curve with a 
low slope. In addition, a large number of fielded systems and/or a low MTBF would make a 
mature system a good candidate. Finally, if a mature system is to receive an extensive upgrade 
which extends its service life, the upgrade may represent a cost effective opportunity to insert 
NNFAF technology. 

7.3.2  Emerging  Systems 

The benefits of neural network insertion into emerging systems must be evaluated on a case-by- 
case basis. Many systems acquired within the last ten years were designed and tested to 
reasonably stringent FAR requirements, (e.g., 3% for Air Force MILSTAR terminals). The costs 
associated with achieving this performance have already been incurred, and the performance is 
already good enough that there will be a high "cost of admission" and high costs for incremental 
improvement. Furthermore, only small improvements in the FAR are possible, since the FAR 
cannot be better than zero. 
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Mitigating factors to be considered for emerging systems include a long remaining life, with an 
associated high likelihood of upgrades on which NNFAF could be "piggybacked"; and a high 
likelihood of sufficient BIT detector coverage and spare processor and memory capacity. Also, in 
some cases fielded systems fall short of requirements despite passing all the required 
maintainability tests. These systems would leave more margin for improvement than the 
requirements may indicate. 

7.3.3 Future  Systems 

Future systems offer the best possibilities for insertion of NNFAF technology, principally because 
the system can be designed to accommodate neural networks from the beginning. The "cost of 
admission " is minimal because it is not necessary to build on an existing system. 

It is entirely possible that NNFAF techniques will initially cost more to implement than other more 
traditional False Alarm reduction techniques. NN filters will likely require more processing and 
memory than alternate approaches (although processing and memory will continue to become less 
and less expensive resources), and will also incur the expense of generating initial training data and 
training the networks. To realize the full effectiveness of NN techniques, it is necessary to collect 
experiential field data. 

7.3.4 MILSTAR Example 

Asan
Ae?amPle of an emerging system, the spreadsheet tools were used to analyze the insertion of 

NNFAF techniques into the Air Force MILSTAR terminals. Where possible, actual logistics cost 
information from the Life Cycle Cost data base is used. In other cases, engineering estimates were 
based on detailed knowledge of the terminal. Kl and K2 are based on engineering judgment. 

The MILSTAR terminal system requirement for FAR is 3%, and the maintainability sell-off tests 
onrTra!e Ae ternunals ^ meet Ais requirement. The estimated "break even" cost to attain the 
3% false alarm rate using NNFAF techniques is about $46M, versus a maximum savings at 0% 
false alarm rate of about $6.2M. Therefore, the benefit curve falls way short of ever crossing the 
cost curve. 6 

There are two reasons for the lack of payback. The processors in the TAC and BBP are based on a 
twenty-five year old architecture (the Data General Eclipse) implemented in twenty year old 
technology (predominantly SSI and MSI integrated circuits). Although there are a few reasonably 
current microprocessors in the system (e.g., 80286, 8080) and three 2901-based signal processing 
computers which can be programmed only in a very low level assembly language, no combination 
ot tnese provides enough throughput to support neural network processing. ROM and RAM 
memory is also based on older, lower density technology. Therefore the upgrade costs have a high 
recumng component due to the necessity to totally replace the TAC and BBP processors and 
memory. This in turn would necessitate re-compiling and re-testing all the application code. 

The second reason is that the terminal FA performance is already quite good at 3%. This results in 
a high incremental cost of improvement with little room for significant gains. 
7.4 Impact Study Summary 

Initially, Neural Network False Alarm Filtering may cost more to implement than other methods 
which at the outset, may work as well. The costs are driven by processing and memory needs, 
plus the need for generating initial training data and the training of the networks.  The major 
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advantage to NN techniques is the relative ease with which changes may be made as field 
experience is gained. However, it is unlikely that any one terminal will experience enough failures 
and false alarms to permit effective retraining of the networks. Furthermore, independent learning 
and updating would result in a very difficult configuration management problem. 

To take full advantage of the retraining capability of NN techniques, it will be necessary to have a 
system in place to collect and analyze field data across all terminals and periodically distribute 
revised connectivity and coefficients. Although there are costs associated with the collection and 
analysis of field data to improve performance, the very systematic nature of neural networks will 
ultimately lower the cost of improving system performance compared to the traditional ad hoc 
methods usually used, and ultimately result in better performance. 

A Global MILSATCOM Maintenance (GMM) system to automate the collection of data and 
provide central facility analytical tools to help improve both false alarm and module isolation 
performance is currently being studied under contract to ARPA. (See Figure 7.4-1.) 

BIT 
Neural Net Filters/Detectors 
Expert System Classifier 

1 Repair Documentation 

Data Base Of Fault Histories 
NN Training/Testing Data 
Expert Logic 
Tools To Detect Trends and 
Anomalies 
Filter/Detector Updates 
Classifier Updates 

Figure 7.4-1. Global MILSATCOM Maintenance Concept 

In the GMM concept, neural networks and expert systems are used in each terminal to provide 
false alarm filtering and module isolation. Whenever a failure is detected, the terminal retains the 
associated BIT signature and, via operator/maintainer query, determines the repair action that 
actually fixed the problem. At the next opportunity, on a low priority not-to-interfere basis, the 
terminal uses an order wire channel over the satellite to send the BIT signature and repair history to 
a central facility. 
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The central facility builds a case record for all the fielded terminals, and provides case-based 
reasoning tools to assist an analyst in identifying flaws in the expert system logic and the neural 
networks. Periodically, revised networks are trained and tested and distributed to the terminals via 
the normal software update paths. The result is that each terminal 'learns" from the experience of 
all fielded systems, so BIT performance improves over time in a way that is essentially transparent 
to the operator or maintainer. 

In summary, it is difficult to draw any general conclusions regarding the cost-effectiveness of 
neural network insertion. There are many dependencies, and each case must be considered 
individually. Therefore the spreadsheets provide a list of factors which affect the costs and 
benefits of neural network insertion, and a "first order" model to assist in assessing the trade-offs. 
The following key attributes in combination clearly make a system a good candidate for neural 
network insertion: 

Table 7.4-1.    Key Attributes of   a Good System Candidate for NNFAF Insertion 

• Long Remaining Life 

• Large Number of Fielded Systems 

• High Present False Alarm Rate 

• Low MTBF 

• High Cost of a False Pull or Mission Abort 

• Ample Reserve Processing/Memory 

• Good existing BIT Detector Coverage 

• System Already in Place to Support Collection of Field Data 

• System Already in Place to Distribute NN Updates  

8. DEMONSTRATION 

The NNFAF demonstration was the culmination of the NNFAF contract efforts. It was defined in 
the NNFAF statement of work to be a demonstration of the application of neural networks to 
improving BIT by filtering out false alarms and identifying intermittent faults. The four 
demonstration approaches were incorporated into a software demonstration which was conducted 
at Rome Laboratory on August 24, 1994. This section describes the preparation, conduct, and 
results of the demonstration. 

8.1 Assessment Plan 

The deliverable R&D Test and Acceptance Plan (Demo Plan) was used to define the demonstration 
and evaluation procedures. The demonstration tests consisted of one mini-demonstration test and 
four demonstration tests. The mini-demonstration illustrated, in a pre-scripted manner, each of the 
four approaches which were selected during the approach down selection process and implemented 
using the BIT simulator and the neural network development process. Each approach consisted of 
a unique neural network model which was implemented to evaluate its performance with respect to 
a combination of fault report cause and BIT technique. The remainder of the demonstration tests 
exercised various capabilities of the NNFAF software. 
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Table 8.1-1 summarizes the demonstration tests. 

Table 8.1-1.    NNFAF Demonstration Tests 

Test 
1 

Test Description 
Mini-Demo: Demonstrate each approach / 
network type via pre-scripted visualizations 
available from NNFAF user interface. 
Four menu choices correspond to four 
approaches. Each menu selection 
demonstrates unique level of BIT fault 
status reporting. 

Demonstrate performance of SPR network 
applied to Activity Detector BIT, with 
Temperature fault report cause (uses mini- 
demo SPR menu selection). 

 Approach  
REINFORCE/Temperature/Viterbi, LRU 
level 
SPR/Temperature/Activity Detector, LRU 
level 
Backpropagation/G-Load/Parity, Global 
Fault Table level 
Backpropagation/Vibration/Parity, Source 
level 
SPR/Temperature/Activity Detector, LRU 
level 

Demonstrate performance of REINFORCE 
network applied to Viterbi Decoder BIT, 
with Temperature fault report cause (uses 
mini-demo REINFORCE menu selection) 
Demonstrate basic functionality of NNFAF 
system: GUI, use of simulator to generate 
network training/testing data, use of 
NNFAF data processing utilities, use of 
NWorks to build, train, test network file. 
Demonstrate performance of 
Backpropagation network applied to Parity 
BIT, with Vibration fault report cause, 
using generated network and data. 
Demonstrate use of simulator to generate 
"noisy" data. Demonstrate performance of 
Backpropagation network applied to Parity 
BIT, with G-Load fault report cause, using 
existing network with generated noisy data. 

REINFORCE/Temperature/Viterbi, LRU 
level 

Backpropagation/Vibration/Parity, Source 
level 

Backpropagation/G-Load/Parity, Source 
level 

8.2 Evaluation Methodology 

The NNFAF software was installed on the Rome Laboratory delivery platform (Sun) immediately 
prior to acceptance testing. The evaluation of NNFAF was conducted at Rome Laboratory on the 
Rome Laboratory delivery platform using the R&D Test and Acceptance Plan. All of the 
demonstration tests were conducted by a Contractor representative (the NNFAF neural network 
expert) in the presence of a Government representative (the NNFAF Program Manager). 

The mini-demonstration was also presented as part of the final NNFAF oral presentation at Rome 
Laboratory. Each mini-demonstration selection was run. For each, the final neural network 
architecture and neural network configuration were shown and explained. The related fault report 
cause and BIT technique were explained.  Each network was presented with a set of test data 
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previously generated by the NNFAF BIT simulator, simulating the effect of the fault report cause 
on the related BIT technique. The networks were run against the data (tested) and the results of the 
test pass were displayed via network instrumentation and/or written to a results file. 

8.3 Demonstration Results 

All of the demonstration tests were successfully conducted in accordance with the R&D Test and 
Acceptance Plan. Documentation of acceptance (signatures of contractor and Government 
representative) can be found in the R&D Test and Acceptance Plan in the section "Documentation 
of Acceptance." 

9.   CONCLUSIONS 

The NNFAF contract addressed the feasibility of using neural networks to filter BIT false alarms 
and to identify BIT intermittent failures. The work consisted of a state-of-the-art assessment of 
neural network and BIT technologies; a methodical down selection of four candidate approaches 
(consisting of a neural network model, a BIT technique, and a fault report cause) for 
demonstration; software and neural network development efforts to implement a BIT simulator and 
to develop, train, test and evaluate the neural networks; a study of the impact of neural network 
false alarm filter insertion into mature, current, and future communication systems, and a 
demonstration of the approaches. 

The results of this effort indicate that neural networks show a potential to filter BIT false alarms 
and to identify BIT intermittent and hard failures. The neural networks were evaluated using 
simulated BIT fault report signatures (collections of simulated BIT device status reports over 
defined intervals of time). Some of the data contained simulated noise, in order to evaluate the 
robustness or generalization capabilities of the networks. 

The results show that not all networks were equally suited to the false alarm filtering task: the 
Backpropagation and REINFORCE network models were superior to the SPR model. Presented 
with previously unseen data, both the Backpropagation and REINFORCE models were successful 
at distinguishing between the four fault signature classes. Both models were reasonably successful 
at identifying the fault signature classes, given low to moderately noisy data; the REINFORCE 
model was slightly superior to the Backpropagation model. Neither model performed well with 
very noisy data. 

With regard to the impact of inserting neural network false alarm filters in communications 
systems, it is difficult to draw any broad conclusions regarding the costs and benefits of such 
insertions without considering specific systems and circumstances. The results of the impact study 
show that the best candidates for NNFAF technology are future, yet to be designed systems for 
which neural network filter requirements can be included in the initial system design. 

Finally, the results show that there are many challenging issues which still must be resolved. The 
first is to use real failure data for network training and testing. One of the potential problems with 
using real data is that the data may not be available, if the BIT system is not operational when the 
networks are developed. Another unresolved issue relating to the use of real failure data is fault 
signature cueing (determining where, in a stream of BrT status reports, the fault signatures begin 
and end). One of the major advantages of NNFAF technology is the ease of updating through 
network retraining. To take maximum advantage of this adaptability, a system must be in place to 
collect field failure data, retrain the networks and distribute revisions to the systems. Several such 
iterations may be necessary in order to optimize the network performance. 
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10. LESSONS  LEARNED 

The major lessons learned as a result of this effort were: 

The structured down selection process was a good method of analyzing a large space of potential 
solutions, given a restricted budget. 

The Backpropagation network model performed surprisingly well with the temporal data in this 
problem domain. 

The REINFORCE network also performed extremely well and should be studied further. 

The cost/benefit spreadsheets used for the impact study evolved into a beneficial estimating tool. 

11. RECOMMENDATIONS FOR FUTURE WORK 

Future work for BIT neural network false alarm filtering should address the unresolved issue of 
training and testing the networks with real failure data. In addition, a logical extension of the BIT 
neural network false alarm filter is to investigate the use of neural network and other AI 
technologies to improve fault isolation: typically, incorrect or ambiguous module isolation is also a 
significant contributor to false pulls. A Global MILSATCOM Maintenance (GMM) system is 
currently being studied under contract to ARPA. Its concept is to automate the collection of 
historical system performance data and to provide centrally-located intelligent analytical tools to 
help reduce false alarms and to improve module isolation performance (See Figure 7.4-1.). Other 
recommendations for future work involve (1) further study of both Backpropagation and 
REINFORCE networks in this problem domain, (2) a comparison of neural network filtering 
techniques with other methods of false alarm mitigation, (3) extending and refining the cost/benefit 
spreadsheet analysis method used in the impact study to provide a more general-purpose tool for 
analyzing the impact of technology insertion into communications systems, and (4) an investigation 
of the approaches to scaling up from one network to multiple networks in a full BIT system, 
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12. APPENDIX A.    BIT BIBLIOGRAPHY AND LITERATURE ABSTRACTS 

This appendix contains the BIT bibliography and literature abstracts The BIT bibliography and 
litemSe abstracts were compiled and written during the state of the art assessment task and 
updated throughout the contract. Note that an asterisk preceding the reference number indicates 
that the reference was considered especially relevant to the NNFAF effort. 

*[1] Blumberg, J. F. "Learning by Examples with Uncertainty for the Adaptive Diagnostic 
System", Fifth Annual AT Systems in Government Conference, 1990. 

A learning technique which applies Cramer's V to a Chi-square statistical value can be applied to 
hVpr^e BIT isolation. This technique was developed under the Navy Integrated Diagnostic 
Support System (TOSS). BIT fault signatures may look the same for two or more feuIts.. This 
technique uses feedback from the maintenance personnel to adaptively learn the probability of 
which fault caused the signature. The feedback is merely the fault isolation report, the isolated 
faulty unit, and if the isolation report was correct. 

[2]Cavanaugh, K. F. "CITS Expert Parameter System (CEPS)", TFFE NAECQN, 1987. 

The CEPS proiect is an AVexpert system which was applied to the Bl-B to improve maintenance 
diagnostics It uses a rules based knowledge expert system which describes rules for determining 
the health of each function and the SRUs involved with each function. The result is that if a 
system function fails, then each SRU will be identified with a certainty factor describing the 
likelihood that the SRU caused the function to fail. 

*[3] Cooper, C, Haller, K. A., Zourides, V. G., Skeberdis, P., and Gibson, W. Smart 
BIT/TSMD Integration, Final Report, RL-TR-91-353. 

Report generated by Grumman for Rome Lab on integrating SMART BIT and TSMD (previous 
Rome Lab studies). Grumman used a simulator to demonstrate the results of implementing 
SMART BIT and TSMD in a system. Several artificial intelligence (AI) techniques were employed 
from previous SMART BIT projects. Neural networks and k-nearest neighbor AI techniques were 
introduced in the SMART BIT system during this project. The TSMD (time stress management 
device) collects environmental data to correlate to BIT reports and possibly filter out false alarms 
due to the environment. 

The implementation of TSMD data into a SMART BIT system is a good idea. However, the 
correlation between TSMD data and false alarms does not have known signatures. This project 
focused on defining how environmental data affects false alarms (FAs) and showing that the 
system could recognize this. The system should be able to recognize the correlation between FAs 
and the environment. But, since a model of FA/environment doesn't realistically exist, the system 
must be able to determine if a correlation between the environment and FAs exists or not. If a 
correlation does exist, then the system must be adaptable enough to recognize correlations between 
FAs and the environment that differ from the training models. 

[4] Counil, G, and Cambon, G. "Functional Approach to Built-in Seiftest of Integrated Digital 
Filters", Electronic Letters, v. 27 n. 25, 2326-2327, December 5, 1991. 
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Linear feedback shift registers (LFSRs) are applied to digital filters inputs and outputs for BIT. 
The input LFSRs generate pseudorandom data, whereas the output LFSR generates a signature. 

[5] Davis, K. "Diagnostic Expert System for the BIB", IEEE AES Magazine. April 1988. 

The CEPS (Central Integrated Test System (CITS) Expert Parameter System) was developed to 
improve failure isolation in the Bl-B. The CEPS system is described, as well as a discussion of 
the causes of diagnostic problems. 

[6] Gleason, D. "Analysis of Built-in Test Accuracy", 1982 IEEE Reliability and Maintainability 
Symposium. 

A Markov analysis is presented in relationship to BIT detection, isolation, and false alarms. The 
math behind the analysis is described. However, this analysis is not accurate when applied to 
systems which have a relatively low failure rate and a low false alarm rate. 

[7] Haller, K. A., Zbytniewski, J. D., and Anderson, K. "Smart Built-in Test (BIT)", IEEE 
AUTOTESTCON. 1985. 

SMART BIT is a Rome Lab. project which uses BIT techniques and artificial intelligence to 
prevent false alarms and intermittent failures. SMART BIT used four basic filtering techniques -1) 
Integrated BIT, 2) Information-Enhanced BIT, 3) Improved Decision BIT, 4) and Maintenance 
History BIT. These techniques are described and were demonstrated in a LISP demonstration 
system. 

[8] Harris, C. M. and Crede, C. E., Shock and Vibration Handbook: Basic Theory and 
Measurements. Vol. 1, McGraw-Hill, 1961. 

The vibration curve was defined based on equations from this book. 

[9] Howell, V. J., and McArthur, T S. "Central Integrated Test System (CITS) Expert Parameter 
System (CEPS): A Logistics Perspective", IEEE NAECON. May 1989. 

CEPS is a large expert system that was applied to the Bl-B aircraft to shorten maintenance time 
and reduce cannot duplicates (CNDs) and retest OKs (RTOKs). A brief high level description of 
the CEPS program is presented. 

*[10] Malcolm, J. G. "Practical Application of Bayes' Formulas", 1983 IEEE Reliability and 
Maintainability Symposium. 

Bayes' formulas can be applied to the area of BIT to show the relationships between fault 
parameters, system reliability, and failure detection. Fault parameters include retest OK, false 
alarms, missed faults, and cannot duplicate. The theory and presentation is very good. However, 
a definition of false alarm was improperly used which resulted in an incorrect observation. 

[11] Marvel, D., and Hurst, G.   "T-l Maintenance Takes a New Path", Telephony. June 15 
1992. y 

Bit error rate can be tested remotely to determine fault location using key physical parameters. The 
application of this maintenance philosophy is in the telecommunications industry and does not have 
any practical use in military systems. 
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[12] Petrov., P. G. "Method for Testable Design and for Built-in Test", CSTflF.FF. Symposium on 
VLSI Design. 1991. 

The paper discusses the application of m-class algebra to a design for testability and BIT. The 
material is not clearly presented. As a result, no benefit can be drawn from this report. 

[13] Richards, D. W., and Collins, J. A. "Intelligent Built-in Test and Stress Measurement", 
TFFF ATITOTESTCON. 1989. 

This paper presents the use of both SMART BIT and TSMD to improve future BIT effectiveness 
and confidence. An introduction to BIT problems and a two level maintenance approach are 
described. Overviews of the Rome Lab. SMART BIT and TSMD projects are presented as well as 
the status of both projects. 

[14] RADC-TR-81-220, Analysis of Built-in Test False Alarm Conditions. Hughes Aircraft Co., 
Feb. 1981. 

The determination of reports to have been caused by false alarms is very simplistic. Back-up 
information is not presented for charts or conclusions. 

[15] RADC-TR-90-31, A Contractor Program Manager's Testability/Diagnostics Guide, Giordano 
Assoc, April 1990. 

Not a lot of applicable information but some interesting statistics. For example, F-16 had > 
13,600 man hours for processing unnecessary removals over a 6 month penod. Also, DoD task 
force (86) found 20-50% maintenance actions resulted in NEOF. 

[16] RL-TR-92-82, Design Definition Phase for Micro Time Stress Measurement Device CTSMD) 
Development. Final Technical Report. Westinghouse Electronic Corp., May 1992. 

[17] Rosenthal, D., and Wadell, B. C. "Predicting and Eliminating Built-in Test False Alarms", 
TFFE Transactions on Reliability. v39, n 4, October 1990. 

The effects of BITE measurement noise and bias on BIT reports are examined. Guidelines for BIT 
measurement limits are presented that can be applied to tests to predict false alarm potential. 
Probability theory for BIT is also presented. 

[18] Shao, J., and Lamberson, L. R. "Markov Model for k-Out-of-n:G Systems With Built-in- 
Test", Microelectronics and Reliability, v 31 n 1, 123-131, 1991. 

A Markov Model for k-out-of-n:G systems is applied to BIT with a detailed presentation of the 
probability theory. The author feels that a Markov process is the best way to analyze BIT 
parameters. System reliability functions are generated and presented in several numerical 
examples. 

*[19] Shen, Y.-N., and Lombardi, F. "Concurrent Built-in Self-Test with Reduced Fault 
Latency", 1991 IEEE International Workshop on Defect and Fault Tolerance on VLSI Systems. 

Several new concurrent BIT techniques are presented for equivalent combinational circuits or D- 
latches in a design. The equivalent combinational circuits are tested by adding BIT circuitry which 
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monitors the inputs of each equivalent circuit. When the inputs of two agree, then the outputs are 
verified to agree. If the outputs are not the same, then a failure exists. Both a technique using a 
ring counter and parity tree are presented for D-latch BIT. Both methods can test out memory cells 
with low area overhead. These types of BIT designs can easily be implemented in large scale 
integrated devices. Fault detection latency is addressed and determined to be low for both the 
equivalent combinational circuit BIT and D-latch BIT. The math behind the fault latency 
calculations is presented as well as several examples. 

[20] Turino, J. "You Can Obtain Boundary Scan's Benefits Despite Use of Some Nonscan ICs" 
EDN. November 12, 1992. 

The basic testability advantages of implementing boundary scan devices in a design are presented. 
Testing of non-boundary scan components by using adjacent boundary scan devices as "virtual test 
points" is included. 

*[21] Zbytniewski, J. and Anderson, K. "Smart BIT-2: Adding Intelligence to Built-in-Test" 
IEEE NAECON. 1989. 

The SMART BIT 2 is a continuation of the SMART BIT project sponsored by Rome Lab. The 
goals of SMART BIT 2 are to continue developing effective and efficient methods of improving 
BIT accuracy and dependability. Several approaches to adaptive BIT/neural networks and 
temporal models are briefly described. The SMART BIT techniques were demonstrated and the 
results summarized. 

[22] Zourides, V. G. "Smart Built-in-Test (BIT): An Overview", IEEE AUTOTESTCON. 1989. 

A description of the history of the SMART BIT project is described. The reasons why SMART 
BIT was initiated is mentioned. An overview of each phase in the SMART BIT program is 
presented - SMART BIT, SMART BIT 2, and Integration of SMART BIT for JSTARS Also a 
very brief description of each SMART BIT technique is presented. 
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13. APPENDIX B.   BIT DEFINITIONS OF TERMS 

This appendix contains definitions of terms relevant to the BIT domain Some of these definitions 
are taken from military or other standards, and some were defined by the NNFAF BIT experts for 
the NNFAF contract. The source of the definition is indicated following the definition. 

Arrive Built-in-Test (BYT). A type of BIT which is temporarily disruptive to the prime system 
operation through the injection of test stimuli into the system. (MIL-STD-1309C) 

Arrive. Redundancy. That condition where parallel back-up items are operating simultaneously, 
rather than being switched on when needed. (MIL-STD-1309C) 

AWithmicaHy Cienerated Pattern. An array of digital data automatically generated by a 
predetermined software routine or program. The pattern may be generated and applied in real time. 
(MIL-STD-1309C) 

AmhignitvOroup. The group of maintenance replaceable units which may have faults resulting in 
the same fault signature. (MIL-STD-1309C) 

Availability. A measure of the degree to which an item is in operable and committable state at the 
start of a mission, when the mission is called for at an unknown (random) point in time. (MIL- 
STD-1309C) 

Rnilt-in-Test (BIT). An integral capability of the mission equipment which provides an on-board, 
automated test capability to detect, diagnose, or isolate system failures. The fault detection and, 
possibly isolation capability is used for periodic or continuous monitoring of a system s 
operational health, and for observation and, possibly, diagnosis as a prelude to maintenance action. 
(MIL-STD-1309C) 

BTT. Continuous. A type of BIT which continually monitors system operation for errors. 
Examples include parity and other error detecting codes. (MIL-STD-1309C) 

BTT Fault Signature. The BIT report values (usually Pass/Fail) over a period of time that can be 
used to classify a failure in the area tested by the BIT routine. (NNFAF) 

BTT. Initiated. A type of BIT which is executed only after the occurrence of an external event such 
as an action by an operator. (MIL-STD-1309C) 

BTT. Passive. A type of BIT which is non-disruptive and non-interfering to the prime system. 
(MIL-STD-1309C) 

BTT. Periodic. A type of BIT which is initiated at some frequency. An example is BIT software 
executing during planned processor idle time. (MIL-STD-13Ö9C) 

Cannot Duplicate (CND). A fault indicated by BIT or other monitoring circuitry which cannot be 
confirmed at the next level of maintenance. (MIL-STD-1309C) 

Central Integrated Test System. An on-line test system which processes, records, or displays at a 
central location, information gathered by test point data sensors at more than one remotely located 
equipment or system under test (also called system integrated test system). (MIL-STD-1309C) 
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Collaborative Data. Data that can validate a fault report. For example, a system level failure may 
validate a lower level fault report. (NNFAF) 

Correlation Data.   Data that can be used as part of a BIT fault signature.(NNFAF).   Some 
examples are: 

• Other Brr reports. 
• System state, such as antenna transmitting, special processes occurring, etc. 
• Environmental data such as temperature, vibration, G force, and state of other platform 

equipment. 

Equivalent Faults. Two or more faults which create the same response for all possible tests. (MTL- 
STD-1309C) 

Failure, (1) The state of inability of an item to perform its required function. Failure is the 
functional manifestation of a fault. (MIL-STD-1309C) 

(2) Change in operating characteristics of an item resulting in degradation of useful 
performance. (MTL-STD-1309D) 

(3) (Working definition) The inability of an item to perform its specified function, 
which results in the inability of the system to perform its specified function. (NNFAF) 

Failure, Intermittent,   (1) A failure which occurs randomly in time. (MIL-STD-1309C) 

(2) Failure for a limited period of time, followed by the item's recovery of 
its ability to perform within specified limits without any remedial action. (MIL-STD-1309D) 

(3) (Working definition) A fault which results in a failure that occurs 
repeatedly over time. Intermittent failures can occur at regular intervals or randomly. (NNFAF) 
Rules and qualifiers for the intermittent failure definition were also defined: 

The system does not meet its requirements when an intermittent failure exists. 
If the system is in an over-spec condition then a BIT failure report is invalid and is not an 

intermittent. 
An intermittent failure must be reported at least to the maintenance operator so that a repair 

decision can be made. 
Intermittent failures may not need to be reported during the platform operation depending 

on the severity of the failure. 

Failure Report Latency. The amount of time that it takes to report a failure after the failure occurs 
(NNFAF) 

False Alarrp-   (1) A fault indicated by BIT or other monitoring circuitry where no fault exists. 
(MIL-STD-1309C) 

(2) A fault indicated by BIT or other monitoring circuitry where no fault exists 
Note that a BfT false alarm is actually a malfunction of the BfT. (MIL-STD-1309D) 
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(3) (Working definition) An incorrect report to the operator that a maintenance or 
repair action is necessary when no action should be taken. (NNFAF). Rules and qualifiers for the 

^.ÄÄÄl is OK, then the portion of the system that the signal 

coUatoratesjs^OK.^ ^ ^ ^ over.spec condition then a BIT failure report is invalid and is not a 

false alarm-fauu ^.^ ^ ^ system stm meetg Us requirements, then a system failure does not 

eX1St'   Events that cause false alarms never require a repair action to be taken and should not be 
reported to the operator during platform operation. 

Fault.  (1) A physical condition that causes a device, component or element ito:fail to perform in a 
required manner; for example, a short-circuit or a broken wire. (MIL-STD-1309C) 

(2) A physical condition that causes a device, a component, or an element to fail to perform 
in a required manner; for example, a short circuit or a broken wire or an intermittent connection; or, 
a degradation in performance due to detuning, maladjustment, imsal ignment,or fai lure of parts or, 
immediate cause of failure (e.g., maladjustment, misalignment, defect, etc.). (MIL-STD-1309D) 

(3) (Working definition) The inability of a component to perform the specified 
requirements of that component. Note that a fault may not affect the specified system operation 
and as a result is not considered a failure. (NNFAF) 

Fanlt Kmiivalence. Two or more faults which create the same response for all possible tests. 
(MIL-STD-1309D) 

Fault Tsolation. Isolating the fault internal to an integrated component or device such as an 
integrated circuit. (MIL-STD-1309C) 

Fanlt T.at^ncv Time. The extent or duration of time during which the existence of a fault is not 
known; or, the elapsed time between fault occurrence and fault indication. (MIL-STD-1309C) 

Fault Ont-of-Tolerance. A defect or malfunction in a component, assembly or system in which a 
performance parameter approximates but fails outside the prescribed upper or lower limit for the 
parameter. (MIL-STD-1309C) 

Global Fault Signature. The BIT report values (BIT fault signature) with system operational status 
(system fault signature) and environmental information over a period of time that can be used to 
classify a failure. The environmental information includes any information or state that can be 
gathered which is generated externally from the system. (NNFAF) 

Historical Time. Time that spans a relatively large period and includes multiple signatures. 
(NNFAF) 

Local Time. Time within the period of a specific signature. Local time is a subset of historical 
time. (NNFAF) 

Parity Bit. An additional bit used in digital data transmission or memory to make_the number of 
"1" bits it contains either odd or even as appropriate for a given application. (MIL-b 1D-I3uyw 
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Periodic Check  A test or series of tests performed at designated intervals to determine if all 
elements of the UUT or test system are operating within their designated limits. (MIL-STD-1309C) 

Prognostics. The use of test, performance, or other related data in the evaluation of a system or 
equipment for determining the potential of impending faults. (MIL-STD-1309D) 

Pseudo-random Patterns. A repeatable sequence of digital patterns that has the appearance of being 
random. (MTL-STD-1309D) 6 

Re-test OK (RTOK).  (1) The subsequent passing of a previously failed test. (MTL-STD-1309C) 

(2) A unit that was identified as malfunctioning in a particular manner at one 
maintenance level, but that specific malfunction could not be duplicated at a higher maintenance 
level facility. (MTL-STD- 1309D) 

System Fault Signature.  The BIT report values (BIT fault signature) with system operational 
status over a period of time that can be used to classify a failure. The system operational status 
1,xfx1^?S^ny informatlon or state that can be gathered which is generated from within the system 
(NNFAF) J 
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14. APPENDIX C.    NEURAL NETWORK BIBLIOGRAPHY AND LITERATURE 
ABSTRACTS 

This appendix contains the neural network bibliography and literature abstracts The neural 
network bibliography and literature abstracts were compiled and wntten during the state of the art 
Ssmenms^fand updated throughout the contract. Some of the entries in the bibliography were 
abstracted and some were not. Those that were not are included here in the subsection entitled 
Other References. 

[1] Adams, Dennis J., Stuart Clary, Yoh-Han Pao, Thomas L Hemminger, and Percy P. C:. Yip. 
"An Efficient Hierarchical Neural Network Architecture for Discriminating Time-Varying 
Underwater Signals." PrrvraHinps of th» fWrnme,nt Neural Network Applications Workshop - 
Volume 2, August 1992, 7-11. 

The work of this paper focuses on using high-order neural networks to classify underwater signals 
which are temporally complex. Self-organization techniques are used to determine prototype 
selection Multiple functional- link networks with random weight enhancements classify events. 
The authors describe an iterative approach, using three increasingly complex systems.^ They also 
present their method for mapping the temporally complex signals into static snapshots which are 
easily recognizable by neural nets. The final system was a hybrid architecture using the functional 
link net The authors present lessons learned for system development time (training the net vs 
determining the system architecture) as well as recommendations for scalability, adaptability, and 
computational efficiency. 

RELEVANCE: This is a different approach to the problem of temporality. The lessons learned 
and recommendations are valuable. 

[2] Anderson, Charles W. "Learning to Control an Inverted Pendulum Using Neural Networks." 
TF.F.K Control Systems Magazine. April 1989, 31-37. 

This paper presents a discussion of how to solve the control problem of the inverted pendulum task 
bv using neural networks. Specifically, the goal is to learn to balance the pendulum with no a 
priori knowledge of the dynamics: performance feedback is not available at each step and appears 
as a failure signal. The issues are delayed performance evaluation, learning under uncertainty, 
learning non-linear functions, and the credit assignment problem. The type of neural network 
learning methods which are evaluated are reinforcement and temporal difference. 

This paper answers the question "How can control be accomplished when neither a model of the 
system dynamics nor an objective function describing the system's behavior is available / 

The inverted pendulum problem is described, as well as how it has been solved previously using 
neural networks. This research uses two unsupervised learning networks. The first is the action 
network which maps the current state into control actions. It is a reinforcement network which is 
single layer and stochastic and its output is the probability of generating a left or right push control 
action The second is the evaluation network, which maps the current state into an evaluation of 
that state. It is a temporal-difference network (see Sutton). The system was evaluated against 
Michie and Chambers' BOXES system as a single layer network system with one single binary- 
valued input. Then it was built with a hidden layer in each network, using backpropagation as the 
learning mechanism. The system learned indirect non-linear mapping. 
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RELEVANCE: This paper discusses use of the temporal difference and reinforcement models and 
application of the temporal difference model using a multi-layer network and backpropagation. The 
system demonstrates the utility of separating system functions into two networks and linking them 
together. 

[3] Atkins, Robert G. Private Communication. 

This communication concerned classification of radar targets from high range resolution profiles 
using multi-layer perceptron neural networks. The backpropagation learning rule was used. The 
author experimented with network size vs. real vs. ideal input data (features), as well as with 
additive noise and alignment uncertainty. The work compared the computational and storage 
requirements of a neural network backpropagation classifier to profile matching, Euclidean 
distance, and Mahalanobis distance classifiers. The work concludes that the neural network 
performs better than conventional classifiers, although it does not take into account the size of the 
training data sets, nor the length of training time. 

RELEVANCE: The paper presented a learned heuristic: it is necessary to match the complexity of 
the classifier with the complexity of the distribution of the feature vectors. Also, the network must 
be trained to learn about noise and other feature variations in order to become insensitive to them. 
Be careful of misleading training. 

[4] Barto, Andrew G. and P. Anandan. "Pattern-Recognizing Stochastic Learning Automata." 
IEEE Transactions on Systems. Man, and Cybernetics. Vol. SMC-15, No. 3, May/June 1985, 
360-375. 

This paper discusses the Associative Reward-Penalty (AR-P) algorithm and proves a form of 
optimal performance. Simulation results are presented which illustrate the task performance and 
allow it to be compared with other algorithms. 

The theory of learning automata is briefly presented, followed by supervised learning pattern 
classification (note that this paper is PRE-backpropagation). The associated learning method is a 
minimization of the mean-square approximation error. Then, associative reinforcement learning is 
described, wherein the learning system and its environment interact in a closed loop. At time step 
k, the system evaluates itself via the environment, and responds with an action. The algorithm is 
presented and a convergence theorem is proved. Simulation results are given and a comparison is 
made with the selective bootstrap algorithm (Widrow et. al.) 

RELEVANCE: This algorithm intersects supervised and unsupervised learning methods. 

[5] Barto, Andrew G. and Michael I. Jordan. "Gradient Following without Backpropagation in 
Layered Networks." IEEE First International Conference nn Neural Networks. Vol. 2, 629- 636. 

This is a method of solving nonlinear supervised learning tasks using multi-layer feedforward 
networks but without backpropagation. Instead it uses the Associative Reward-Penalty (AR-P) 
algorithm. It introduces the S-model AR-P variant for learning with real-valued reinforcement It 
also discusses optimization techniques such as "batching" for increasing the learning efficiency of 
AR-P. This research compares the AR-P variants with each other, as well as very briefly with the 
classical backpropagation method. 

A different method for gradient following (or gradient estimating) was developed: a measure of 
.global performance (a scalar "reinforcement" or "payoff signal) is broadcast to all hidden units in 
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the network.  Each unit must evaluate itself by correlating its activity with the signal and then 
estimating the partial derivative of this measure with respect to its weights. All interacting units 
simultaneously vary their outputs to obtain an estimate of the appropriate derivatives. The gradien 
wkh respect to weights is computed from these estimates.  (NOTE: weights are NOT directly 
varied). 

AR-P networks can perform both supervised learning tasks and associative reinforcement learning 
tasks This paper discusses only non-recurrent networks, specifically feedforward. The learning 
method is mathematically described and the theory is briefly discussed. Optimization was 
accomplished by allowing the weight updating sequence to take place several^times during the 
presentation of a single input pattern. These weight changes are gathered and added to the actual 
weights at the end of the presentation. This is called the "batched" method. Also, the direction of 
steps and the magnitude of the steps in weight space were investigated, since these contribute to the 
convergence speed. 

A benefit of this method is in simpler computational requirements (no recursive error propagation). 
Also, it may be easier to implement in hardware. A drawback is longer learning time (larger 
training data sets), especially when the network has multiple output units. 

RELEVANCE-   This work highlights experimental nature of AR-P model and describes 
disadvantages.    It is related to work by Klopf, stochastic learning automata, Williams 
REINFORCE algorithm, and supervised learning. 

[6] Bray, Michael A. "Alarm Filtering and Presentation." 

This paper discusses alarm filtering and presentation in the control rooms of nuclear power and 
other process control plants. It is a survey of previous approaches, current research and 
implementations, new directions in applying AI technology to the problems, and recommendations 
for the future.   . 

RELEVANCE: It was initially thought that the topic of Alarm Filtering would be relevant. 
However, this subject refers to filtering the alarms which are presented to a nuclear power plant 
operator so that he does not experience information overload, or undue stress in responding to too 
many alarms. All of the alarms are considered real. None are considered false. There is no 
reference to neural networks. 

[7] Caudill, Maureen. "GRNN and Bear It." AI Expert. May 1993, 28-33. 

This article is an introduction to the General Regression Neural Network (GRNN) of D. Specht. 

RELEVANCE: Questionable. 

[8] Caudill, Maureen. "Neural Networks Primer Part VII (Drive Reinforcement Theory)." AI 
Expert. May 1989, 51-58. 

This article presents a brief description of H. Klopf s Drive Reinforcement Theory, based on 
classical conditioning, when a problem involves an "omen" signal that serves as a warning of a 
forthcoming situation to which the network must respond. This model learns the relationship 
between the omen and the response. This is an unsupervised learning method based on variations 
of Hebbian learning to incorporate some temporality by looking at changes in signal level. 
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This currently is a classical conditioning research tool, not used in applications. It has been 
simulated in software by Gluck, Parker and Reifsnider using frequency-coded simulation (pulse- 
coded analog signals). 

RELEVANCE: Temporality is an issue which is discussed: the system computes the change in the 
network after each time tick. The accumulation of changes over time determines the level of 
learning. 

[9] Caudill, Maureen. "Neural Network Training Tips and Techniques." AI Expert. January 
1991, 56-61. 

This article presents tips based on experience and rules of thumb to optimize backprop networks. 
All tips are based on software model implementation. Briefly, the tips are: how to improve 
problems with a bad initial set of weights, how to nudge the network into convergence, how to 
avoid size problems in network scaling, how to work with the momentum term, how to include 
noise to promote insensitivity to it, and how to experiment with the size of the hidden layer. 

RELEVANCE: Methods for optimization and heuristics on network architecture definition are 
provided. 

[10] Chow, Mo-Yuen and Sui Oi Yee. "An Adaptive Backpropagation through Time Training 
Algorithm for a Neural Controller." IEEE International Symposium on Intelligent Control. August 
1991, 170-175. 

This work investigates training neural networks to perform control actions for a given cost function 
and looks at a real-time application. 

The authors propose a variation of BPTT which adjusts the number of time steps K as it trains the 
controller (whereas in standard BPTT, the number of steps is fixed throughout). The result is an 
adaptive BPTT method which reduces the number of time steps and finds the minimal number 
required to successfully train the network. 

RELEVANCE: Temporality is discussed, as well as a method of optimizing a relatively 
experimental model which is known to require large memory in order to iterate through the time 
steps. 

[11] Chow, Mo-Yuen and Sui Oi Yee. "Methodology for On-Line Incipient Fault Detection in 
Single-Phase Squirrel-Cage Induction Motors using Artificial Neural Networks," IEEE 
Transactions on Energy Conversion. Vol. 6, No. 3, September 1991, 536-545. 

This article is similar in content to "Application of Neural Networks to Incipient Fault Detection in 
Induction Motors" abstracted elsewhere. It describes using a three-layer backpropagation neural 
network for incipient fault detection in rotating machines, specifically detection of the turn-to-turn 
insulation faults and bearing wear in an induction motor. 

It also describes the development of another neural network to filter out false alarms (the transient 
state measurements of the motor) while retaining the steady-state measurements, by using a 
modified competitive learning algorithm. Major beliefs expressed are: (1) neural networks have the 
ability to learn a desired mapping based solely on examples without having to know the exact 
mathematical relationship of input to output. (2) Mathematical modeling can be avoided with this 
approach. (3) The fuzzy logic of fault interpretation is implicitly embedded in the neural network. 
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(4) Parallel processing allows an increase of inputs without a corresponding increase in 
computation time. (5) Increasing the number of inputs increases the robustness of the network 
with respect to measurement noise. (6) The internal structure of the network can be easily changed 
by short retraining. 

The experiments were performed based on the assumption that the motor is in a steady-state 
condition. A computer simulation of the motor was used to generate training and testing data. 

A two-network architecture is presented: the inputs (phase current and rotor speed) enter the 
Disturbance and Noise Filter Neural Network, and the outputs of this network (steady-state phase 
current and steady-state rotor speed) enter the Fault Detector Neural Network. The result is the 
condition of the stator winding and bearing. 

The specifics of each network are described, and the simulation results are summarized. The Fault 
Detector Neural Network was tested separately from the Disturbance and Noise Filter Neural 
Network before the two were used in conjunction. The authors conclude that for all the 
performed test cases, using filtered measurements always yielded the correct diagnosis, while 
unfiltered measurements often produced false alarms. They indicate that the two-network system 
could be used in real-time applications. 

RELEVANCE: There is direct applicability of neural networks to fault detection and false alarm 
filtering. 

[12] Chow, Mo-Yuen and Sui Oi Yee. "Using Neural Networks to Detect Incipient Faults in 
Induction Motors," Tnnrnal of Neural Network Computing, Winter 1991, 26-32. 

This article describes using a three-layer backpropagation neural network for incipient fault 
detection in rotating machines, specifically detection of the turn-to-turn insulation faults and 
bearing wear in an induction motor. 

Two networks were looked at. The first was a conventional, three-layer (2, 10, 2) 
backpropagation network, where the two inputs were Phase Current and Rotor Speed. For the 
second it was shown that each of the classifications could be partitioned into three regions, whose 
boundaries could be approximated by quadratic functions of Phase Current and Rotor Speed. The 
input was expanded from 2 dimensions to 5, forming the high-order network (5, 10, 2). 

The fault symptoms were found in the parameters and state values of the motor (bearing wear by 
mechanical damping coefficient, motor winding insulation fault by change in winding inductance). 
Measurements were taken directly from the motor. The network was trained using this data which 
contained different fault conditions. No fuzzy fault interpretation was required using the neural 
network. No motor modeling was necessary. 

The article compared high-order networks with conventional networks and with conventional 
statistical discriminant analysis. Pattern and batch weight update schemes were also compared in 
terms of their learning rates. 

The results indicated that the high-order network yielded the best performance for both winding 
and bearing conditions, and that the pattern update training algorithm learns faster than the batch 
update method. In addition, the high-order network was shown to be a more accurate fault 
detector than conventional statistical methods, according to the results shown in this article. 
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RELEVANCE: There is direct applicability of neural networks to fault detection and false alarm 
filtering. 

[13]   Cooper, Charles, Kenneth A. Haller, John D. Zbytniewski, Kenneth Anderson, Jeff Rev 
Matson. "Smart BIT-2." RADC-TR-89-277, December 1989. (USGO agencies & their 
contractors,   critical  technology). 
This report continues the work done at Grumman for Smart-BJT. Specifically, 3 new smart BIT 
techniques are added: 

1. Adaptive BIT: This technique recognizes intermittent behavior by identifying where 
intermittents occurred previously. The user selects the neural network (backpropagation) which 
trains on known intermittents over a time period and self-adapts, OR the user selects the K-Nearest 
Neighbor classifier. 

2. Temporal Monitoring: This is performed in parallel with Adaptive BIT. It is used to 
develop a model of faulty behavior, which is a Markov model of intermittent behavior. This 
technique used Bernoulli random variables to estimate state transition probabilities dynamically. 
The temporal behavior of faults can be used to predict whether the fault pattern indicates a hard or 
intermittent fault. 

3. Opportunistic Diagnostic BIT: The purpose of this technique is to extract as much 
diagnostic information as possible out of each failing BIT test. Whereas the Adaptive and 
Temporal techniques provided detection of intermittents and limited diagnostic information, the 
Opportunistic Diagnostic is a possible technique for diagnosing the causes of intermittents. 

Sixty-four scenarios from 16 faults were selected from FMECA data. They were induced with or 
without environmental factors as would be measured by a TSMD. There were four failure modes: 
normal, random, burst, and hard. Scenarios simulated vibration, temperature, and ambient faults. 

RELEVANCE: The paper presented implications of a temporal monitoring method coupled with or 
modeled by a neural network. Also, it discussed how a backpropagation neural network has been 
used in the false alarm filtering problem. 

[14] Corsberg, Dan. "Alarm Filtering: Practical Control Room Upgrade Using Expert System 
Concepts." InTech. April 1987, 39- 42. 

This paper describes the Alarm Filtering System (AFS) implemented by Idaho National 
Engineering Laboratory (INEL) for nuclear power plants. The system is meant to aid operators in 
understanding the overall state of the power plant, and to reacting to alarms. It reduces the number 
of alarms/messages that are presented to the operator. It monitors alarm importance relative to the 
current system state. It utilizes object-oriented programming and rule bases in an AI enhanced 
system. 

RELEVANCE: It was initially thought that the topic of Alarm Filtering would be relevant! 
However, this subject refers to filtering the alarms which are presented to a nuclear power plant 
operator, so that he does not experience information overload, or undue stress in responding to too 
many alarms. All of the alarms are considered real. None are considered false. There is no 
reference to neural networks. 

[15] Corsberg, Dan. "Effectively Processing and Displaying Alarm Information." IEEE 
Conference on Human Factors and Power Plants. June, 1988. 

This paper describes the Alarm Filtering System (AFS) implemented by Idaho National 
Engineering Laboratory (INEL) for nuclear power plants. It specifically describes lessons learned 
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after the system was installed at two facilities, and used by operators. It addresses the problems of 
alarm display (showing just enough) as well as alarm processing from the operator's viewpoint. 
The^ystem^modds the operator's methodology for rapidly analyzing changing alarms. It tunes 
alSndout, based on the current state of the system. The system uses AI techniques to 
implement the alarm filtering system. 

RELEVANCE:   It was initially thought that the topic of Alarm Filtering would be relevant 
However, this subject refers to filtering the alarms which are presented to a nuclear power plant 
operator so that he does not experience information overload, or undue stress in responding to too 
many alarms.  All of the alarms are considered real.  None are considered false.  There is no 
reference to neural networks. 

T161 Corsberg Dan and Larry Johnson. "A Nuclear Reactor Alarms Display System Utilizing AI 
Techniques for Alarm Filtering." ANS Conference pn AT and Other Innovate Computer 
Applications in the Nuclear Industry. September 1987. 

This paper describes the Alarm Filtering System (AFS) implemented by Idaho National 
Engineering Laboratory (INEL) for nuclear power plants. The AFS is a knowledge-based a arm 
filtering system. It addresses alarm clutter which reduces alarm display effectiveness. Often alarm 
overload causes operator stress which leads to mistakes. This system is used to identify the most 
important information and focus the operator's attention on it. Alarm importance is measured 
relative to the current plant state. The system uses object-oriented programming and rule-bases as 
AI techniques. It also makes use of a more sophisticated window-based operator display with 
colors indicating alarm severity. It operates in real-time. 

RELEVANCE- It was initially thought that the topic of Alarm Filtering would be relevant. 
However, this subject refers to filtering the alarms which are presented to a nuclear power plant 
operator so that he does not experience information overload, or undue stress in responding to too 
many alarms. All of the alarms are considered real. None are considered false. There is no 
reference to neural networks. 

ri71 Corsberg Dan and Don Sebo. "A Functional Relationship Based Alarm Processing System 
for Nuclear Power." International ANS/F.NS Topical Meeting on Operability of Nuclear Power 
Systems in Normal and Adverse Environments. 1986. 

This paper describes the Alarm Filtering System (AFS) implemented by Idaho National 
Engineering Laboratory (INEL) for nuclear power plants. The AFS is a knowledge-based alarm 
filtering system. It addresses alarm clutter which reduces alarm display effectiveness. Often alarm 
overload causes operator stress which leads to mistakes. This system is used to identify the most 
important information and focus the operator's attention on it. Alarm importance is measured 
relative to the current plant state. The system uses object-oriented programming and rule-bases as 
AI techniques. It merges functional and structural process models. It also makes use of a more 
sophisticated window-based operator display with colors indicating alarm seventy. It operates in 
real-time. 

RELEVANCE: It was initially thought that the topic of Alarm Filtering would be relevant. 
However, this subject refers to filtering the alarms which are presented to a nuclear power plant 
operator, so that he does not experience information overload, or undue stress in responding to too 
many alarms. All of the alarms are considered real. None are considered false. There is no 
reference to neural networks. 
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[18] DARPA Neural Network Study. AFCEA International Press, Fairfax, VA, November 1988. 

This is a definitive study and information gathering effort, and is a centralized repository of 
information. Models which were experimental then have become relatively mature at this writing. 

RELEVANCE: This study discusses real-world applicability of the more well-known models. This 
work provides a basis of comparison with those that are newer and more experimental. 

[19] de Vries, Bert, Ronald Sverdlove, Scott Markel, John Pearson and S. Y. Kung. 
"Classification of Long Signal Segments." Proceedings of the Government Neural Network 
Applications Workshop - Volume 1, August 1992,95-99. 

This paper presents the Gamma Neural Network, a design which offers a flexible temporal 
representation for modeling long delays in classifying signals. It uses a gamma memory, which is 
a combination of the leaky integrator and the tapped delay line. In addition, there were 
approximately 1000 classes of signals, so the authors addressed this problem as well. They 
recommended a separate network for each class. This would relieve the unlearning which would 
occur if one network had to learn all 1000 classes. The authors also recommended a decision- 
based training strategy similar to perceptron learning. 

RELEVANCE: This is a different approach to the problem of temporality. 

[20] Dominic, S., R. Das, D. Whitley and C. Anderson. "Genetic Reinforcement Learning for 
Neural Networks." IJCNN (IEEE). Vol. II, July 1991, 71-76. 

This paper describes the use of a genetic algorithm to train a neural network to control an inverted 
pendulum. This application is suitable to problems where gradient information is not available, or 
where supervised learning is inappropriate. The genetic algorithm generates the candidate network; 
the network is evaluated by applying it to the problem and measuring its time to failure. This 
method is compared to the Adaptive Heuristic Critic network defined by Anderson, which uses the 
Temporal-Differences learning method. 
The comparison shows that the Adaptive Heuristic Critic may learn better when just a failure signal 
is available; however, the genetic algorithm may be more appropriate at avoiding failure but not as 
good at finding an optimal control strategy for all possible states. 

RELEVANCE: Temporality is discussed. This is an innovative use of a genetic algorithm with a 
neural network. 

[21] Fukushima, Kunihiko, Sei Miyake, and Takayuki Ito. "Neocognitron: A Neural Network 
Model fo a Mechanism of Visual Pattern Recognition." IEEE Transactions on Systems. Man and 
Cybernetics. Vol. SMC-13, No. 5, September/October 1983, 826-834. 

Neocognitron is presented as a mechanism of visual pattern recognition via a PDP-11/34 computer 
simulation. It recognizes handwritten Arabic numerals. Its strengths are purported to be that it can 
recognize these same numerals in the presence of considerable distortion in shape. The network is 
multilayered. It is characterized by cells at deeper layers responding more and more selectively to 
stimulus patterns, thereby reducing the effects of shift or distortion. The model discussed in this 
paper utilizes supervised learning. 

The paper describes the different types of cells (S, C, V), the layering of cells, and presents the 
numerical representations of the cell outputs. The process of pattern recognition is described. The 
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method of supervised training is discussed and mathematically presented. Each layer is also 
discussed in detail. The recommendation is made that the number of cell planes of each layer 
should be changed adaptively depending upon the set of patterns which is to be learned. 

It was stated by this paper that the computation and memory storage can be reduced in computer 
simulation by removing references to connections which are not utilized and by generally thinnmg- 
out the network, although thinning-out may result in training difficulty, or presentation of more 
patterns to accomplish the same amount of training. 

RELEVANCE: This model is historically important. 

* [221 Haller, Kenneth A., Kenneth Anderson, John D. Zbytniewski, Laura Bagnall. "Smart BIT." 
RADC-TR-85-148, August 1985.   (USGO & their  contractors,   critical  techno logy*. 

The purposes of this research were to review current available BIT techniques; investigate AI 
techniques applicable to smart BIT; analyze each potentially useful concept to determine feasibility 
with special emphasis on minimizing false alarms and identifying intermittents; assess risks and 
choice of concepts for demonstration; validate selected smart BIT techniques; and document 
results. 

The conclusions of the project were: 

1. Smart BIT techniques can improve initial fault type classification and reduce ambiguity 
groups. 

2. Smart BIT techniques can combine AI with existing avionics hardware (without adding 
test points or fault coverage) to make a smart BIT system with reduced false alarm rate. 

3. An AI program with smart BIT must use a hybrid system with multiple AI techniques. 

4. Intermittent faults were able to be recognized and monitored using parallel processes 
and tracking of time-dependent behavior. 

5. The use of module simulation helped in software development without HIL. 

6. A fixed set of faults could be diagnosed using rule-invoked procedures from a remote 
location. A central depot could thereby fault isolate for electronic units at field sites. 

7. System factors added to decision criteria resulted in improved fault isolation and 
reduced false alarms. 

8. New tools were investigated for future smart BIT applications. 

The recommendations of the project were: 

1. Diagnostic expert systems need more research (AI for maintenance, ATE). 

2. More AI work needs to be done for feedback and state-dependent behavior applications. 

3. There is a need for an integrated AI-based design and development tool to produce a 
declarative description of system and then synthesize a system prototype from this description. 
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4. There is a need for "knowledge crystallization" - programs to convert rule-based 
knowledge into a more compact representation runnable on avionics hardware. 

5. Micro-miniaturize large capacity LISP processors to allow use in avionics equipment. 

6. There is a need for more user-friendly LISP machines. 

7. Temporal reasoning (use of monitors to track behavior over time) needs additional 
research. 

8. There is a need for an integrated approach to reliability and maintenance (BIT plus 
maintenance plus ATE). 

9. A more complex technology needs to be analyzed. 

10. The technology should be incorporated into field systems when ready. 

RELEVANCE: This is the first volume of the smart-BIT studies, which investigate applying AI to 
BIT. 

[23] Hayes, Paul V., R. Timothy Rue, and Samir I. Sayegh. "A Neural Network Approach to 
Fault Isolation." Proceedines of the Government Neural Network Applications Workshon - 
Volume 1, August 1992,25-30. — v 

This paper discusses an approach to using the backpropagation model for classifying (identifying 
isolating) faults in a simple digital circuit. The paper first addresses the state of the art of Test 
Program Set (TPS) diagnostic approaches and surveys the literature available on using neural 
networks for TPS diagnostics. The paper presents techniques for collecting and preprocessing 
training data. The paper present simulation results for the simple digital circuit, and plans for the 
future. 

The researchers found that a two-layer network was sufficient to solve their problem, using a linear 
transfer function. The network size was 54 input nodes, 27 output nodes. Each output node 
represented a unique fault on the UUT, as well as a "UUT Good" class. The output node with the 
largest (most positive value) was the classification. 

RELEVANCE: There is a good discussion of collecting and preprocessing input data, using 
stimulus signatures which are a compression of the original stimulus vector. The paper also 
discusses references to other neural network efforts in the domain, using Kohonen feature maDS 
and the delta rule. v 

5o4co F?o!°i?;?eoffrey E- "Connectionist Learning Procedures." Artificial Intelligence No. 40, 
iyö9, 184-234. 

This is a report which reviews the history and growth of connectionist models and discusses the 
directions which future work must take to further improve the field. The report looks at simple 
associative memories, both linear and non-linear. It presents simple supervised learning 
procedures such as the perceptron and the least squares procedure for binary threshold units It 
discusses backpropagation in detail, including applications and variations (reinforcement, iteration 
self-supervised). Boltzmann machines are described. Semi-supervised and unsupervised learning 
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mechanisms are described, including Hebbian learning, competitive learning, reinforcement 
learning, and genetic algorithm innovations. Deficiencies of each method are presented along the 
way. The author concludes by pointing out areas for future research. 

RELEVANCE: This is a more recent survey of the state of the technology. 

[25] Hiotis, Andre. "Insider a Self-Organizing Map." AI Expert, April 1993, 38-43. 

This paper provides a high level description of the SOM. It presents some interesting heuristics 
regarding both SOM and backprop. For example, it recommends setting the number of hidden 
nodes in a backprop network to the number of features in the input vector. It also states that each 
node in an SOM is a representative of an input vector. This implies that the size of the SOM will 
be as large as the number of inputs (or for each new input, a new node is created? This would 
imply large system growth over time!). The article states that an SOM cannot be overtrained. 
Training time is usually fast. 

RELEVANCE: An unsupervised learning model, with a comparison to backprop. 

[261 Hughen James H. and K. Rex Hollon. "Millimeter Wave Stationary Target Classification 
Using a High Order Neural Network." SHE Vol. 1469, 1991, 341-350. 

This paper investigated using a High Order neural network (HONN) to classify targets from Ka- 
band radar return data. The network provided a minimum mean square error estimate of the 
optimal discriminant but was reported to be easier to train than backpropagation. The authors 
compared the HONN to Gaussian classifiers and to MLP using backpropagation (via other 
research results). 

Their results did not match their expectations. They found that a second order network did NOT 
outperform a first order network. Also they related that the advantages of the HONN over a 
backpropagation MLP would be "ease of training, complexity, and at least as much performance 
improvement over conventional classifiers." 

RELEVANCE: This paper cast a vote for backpropagation for classification. 

[27] Kamgar-Parsi, Behrooz and Behzad Kamgar-Parsi. "Clustering with the Hopfield Neural 
Networks." Proceedings of the Government Neural Network Applications Workshop - Volume 1, 
August 1992, 129-133. 

This paper presents results of experiments with using the Hopfield network (finding the minimum 
of an energy function) to perform clustering, and compares the results with conventional 

. techniques. 

RELEVANCE: This paper is an example of an optimization technique. 

[28] Kim, Dae-Young, Sung-Il Chien, and Hyun Son. "Multiclass 3-D Aircraft ID and 
Orientation Estimation using Multilayer Feedforward Neural Network." IJCNN, Vol. 1,1991, pp. 
758-764. 

This paper documents the application of backpropagation to identification and orientation 
estimation of different classes of aircraft in a variety of 3-D orientations. Also, 2-D distortion- 
invariant feature space was introduced, which describes the aircraft image and is used as input to 
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the neural network. The work studied the optimum structure (various sizes of hidden nodes and 
input features) and the reliability of a neural network classifier. 

The backpropagation method was partly modified using Fahlman's method for faster convergence. 

RELEVANCE: This paper discusses interesting optimization techniques and heuristics. 

[29] Klopf, A. Harry. "Drive-Reinforcement Learning: A Real-Time Learning Mechanism for 
Unsupervised Learning." IEEE First International Conference on Neural Networks. Vol. 2, 1987, 
441-445. 

This paper presents the Drive-Reinforcement Learning model. It is based on classical conditioning 
phenomena, a modified Hebbian learning rule, and unsupervised learning. The modification to 
Hebb is to take into account the passage of time, or sequentiality vs. simultaneity. Neuronal input 
and output are treated as frequencies, reflecting the frequency of their firing. The network is 
characterized by primary (fixed) and secondary (acquired or learned) drives. The mathematical 
model is presented. 

RELEVANCE: The real-time implications of modeling classical conditioning phenomena are of 
interest. 

1 go? Kosko' Bart- Neural Networks and Fuzzy Systems. Prentice-Hall, Englewood Cliffs, NJ, 

This book is being used as a reference for the Bi-directional Associative Memory (BAM) neural 
network model which Kosko developed. There are several relevant chapters. 

RELEVANCE: BAM is a model which is one of the Neuralworks set. 

^3ilifaver' R- A- and R Mars- "Stochastic Computing and Reinforcement Neural Nets " IEEE 
ASSP Magazine. April 1QR7 4-91 "    li*it- 

This paper discusses the Adaptive Reward-Penalty (AR-P) reinforcement learning method It is 
unsupervised and replaces the teacher with a critic which provides reward or penalty responses 
from an environment. The neural network receives these signals and learns to select actions so as 
to maximize the probability of receiving a reward signal. This method uses stochastic learning 
automata theory The signal is a scalar which is used to broadcast a global measure of 
performance. Each adaptive element (node, unit) correlates its own activity with the reinforcement 
signal and estimates the partial derivative of the performance index with respect to its own activity 
l his method was compared with backpropagation: learning speed is slower, but computations are 
simpler. AR-P did not get caught in local minima; AR-P learning scaled poorly, even when using 
gradient reinforcement, due to the restrictive nature of the global reward signal. Backpropagation 
appears to be better suited to solving large problems. The authors' recommendation was to 
hybridize supervised and reinforcement structures. 

RELEVANCE: This paper underlines the usefulness of backpropagation in real-world settings. 

[32]   Lippman  Richard P.   "An Introduction to Computing with Neural Nets", IEEE ASSP 
Magazine. April 1987, 4-22. n"?'7 
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This paper provides an introduction to neural networks by discussing six neural network modek 
for Pattern classification. These are: Hopfield Nets, Hamming Nets Adaptive Resonance Theory 
(ART) Single Layer Perceptron, Multi-Layer Perceptron (with backpropagation learning 
algorithm), Sid Kohonen's Self- Organizing Feature Maps. Neural networks are defined. General 
characteristics of neural network architecture, structure and capabilities are discussed. The areas of 
potential benefit of neural networks are reviewed. A brief history of the work on neural network 
models is presented. A comparison between neural networks and traditional classifiers is 
presented, with block diagrams of the functionality of each. Also the different tasks which 
classifiers can perform are delineated (identification, content-addressable memory, vector 
quantization). A taxonomy is given of six neural networks which can be used for c assification of 
static patterns. The six models are discussed in detail. Algorithms for each model are provided, 
along with representations of the general network structure, layering and connectivity. Examples 
of the performance of each type of network are given. Advantages and disadvantages of each are 
discussed relative to the others and to classical or traditional classifiers. This paper was written in 
1987 when backpropagation was new, and today the six classifiers are some of the more well- 
known neural network models. Nevertheless, this paper presents a good review and comparison 
of the six classifiers. 

RELEVANCE: This is one of the definitive articles in the literature, with good classifier 
descriptions and comparisons. 

[33] Lippman, Richard P. "Pattern Classification Using Neural Networks." IEEE 
Communications. November 1989, 47-64. 

This paper presents a taxonomy of neural network classifiers, and discusses the following topics in 
detail- backpropagation, decision tree, how to match classifier complexity to training data, GMDH 
and High Order networks, K-nearest neighbor, feature-map, learning vector quantizer, 
hypersphere classifiers, and radial basis function classifiers. 

RELEVANCE: This paper contains a good classifier comparison and an excellent list of 
references. 

[34] McAulay, Alastair and Ivan Kadar. "Neural Networks for Adaptive Shape Tracking." SPIE 
Vol. 1099, 1989, 74-82. 

This paper builds a neural network simulation to solve the problem of tracking and maintaining 
identification of aircraft with similar-looking silhouettes, accounting for translation, rotation, 
changing scale or changing aspect. Two neural networks are built: backpropagation and split 
inversion. The split-inversion network computes the weights for both the output and the hidden 
layers so as to minimize the square error at the output of the network. The two are compared. 
Backpropagation converged slowly for networks with few nodes, and failed to converge for larger 
networks. The split-inversion results are provided to 160,000 interconnects, whereas the 
backpropagation did not converge at this size. The mathematical derivation for the split-inversion 
network is not provided. In addition, this was a simple problem which did not account for real- 
time factors. 

RELEVANCE: The author states in his conclusion that the network may have application for time 
sequential pattern recognition or association. 
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[35] Morgan, James S., Elizabeth C. Patterson, and A. Harry Klopf. "A Network of Two Drive- 
Reinforcement Neurons that Learns a Solution to a Real-Time Dynamic Control Problem." First 
Annual INNS Conference. September 1988. 

This paper presents an application of the Drive-Reinforcement Learning model to solve the pole- 
balancing control problem. The model is based on classical conditioning phenomena, a modified 
Hebbian learning rule, and unsupervised learning. The modification to Hebb is to take into 
account the passage of time, or sequentiality vs. simultaneity. Neuronal input and output are 
treated as frequencies, reflecting the frequency of their firing. This article demonstrates the 
important differences between primary (fixed) drives and secondary (acquired) drives. The effects 
of varying learning rates on skill acquisition and retention were also studied. 

RELEVANCE: The real-time implications of modeling classical conditioning phenomena are of 
interest. 

[36] Piche, Stephen W. and Bernard Widrow. "First-Order Gradient Descent Training of 
Adaptive Discrete-Time Dynamic Networks." RL-TR-91-62, May 1991. 

This paper discusses training recurrent neural networks (also known as discrete-time dynamic 
systems with adaptive parameters) using first-order gradient descent algorithms. A definition of a 
standard discrete-time dynamic system is given. The ordered derivative is defined. Epochwise and 
on-line training are defined. Two types of learning algorithms are described and compared: the 
first is based upon the discrete Euler-Lagrange equations and the second is based upon a recursive 
update of the output gradients. Both are also presented with both epochwise and on-line learning 
capabilities. The epochwise discrete Euler-Lagrange method is shown to be equivalent to BPTT. 
The on-line recursive method is shown to be equivalent to recursive backpropagation. The on-line 
versions are shown to be equivalent, and it is also shown that selection of an appropriate gradient 
descent algorithm can be based solely upon computational and storage requirements. A 
computational/storage requirements comparison of the two algorithms is given, as well as 
explanations of how to reduce computational complexity. Examples are provided for a non-linear 
controller and an adaptive filter. Applications include pattern recognition, nonlinear control, 
adaptive control and adaptive digital filtering. 

RELEVANCE: The characteristics of on-line training in a temporal domain are of interest, as are 
state-of-the-art variations of backpropagation. 

[37] Rogers, Steven K. and Matthew Kabrisky. "1988 AFJT Neural Network Research " Air 
Force Institute of Technology, 1988. 

This paper briefly presents a summary of recent (1988) research at the Air Force Institute of 
Technology in the area of neural networks. The Air Force investigated the following topics- 
improving error-driven learning algorithms, speech recognition, target classification, time series 
prediction, and optical and VLSI implementations. The error-driven learning algorithms were 
Glass-Mackay nonlinear differential delay equation, an approximation to Newton's method and a 
combination of a Kohonen network with a MLP. Also, other elements of the error-driven learning 
methods were examined, including modification of the error criterion, the sigmoid function and 
the basic structure of the processing element. 

RELEVANCE:   Some optimization techniques were discussed. 
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[381 Rumelhart, D., D. Hinton, and R. J. Williams. "Learning Internal Representations by Error 
Propagation," in D. Rumelhart and F. McClelland, eds., Parallel Di?tribut<?d Processing, Volume 
1, MIT Press, Cambridge, MA, 1986, 318-362. 

This is the classic backpropagation reference. 

RELEVANCE: This paper also introduces the backpropagation through time model. 

[39] Shyne Scott S. "The Implementation of Neural Nets as Adaptive Pattern Classifiers." 
Masters Thesis, State University of New York Institute of Technology at Utica/Rome, 1989. 

This masters thesis discusses solving the problem of battlefield target recognition by using 
Adaptive Resonance Theory (ART1) and Kohonen's Self-Organizing Map (SOM) neural network 
paradigms These methods are chosen because they lend themselves to unsupervised feature 
extraction These neural network models are not the usual choices for solving the ATR problem; 
however, they performed successfully. The pattern recognition problem is defined; the applicability 
of neural networks to this particular type of problem is discussed. A brief history of neural 
networks is given for reference, including SLP, MLP, backpropagation, Hopfield and Hamming 
networks. ART1 and Kohonen's SOM are discussed in detail. (ART2 is mentioned briefly, but 
was not used in this work.) For each type of network, a description of the simulation, test, 
evaluation and recommendations are given. 

RELEVANCE: Use of these types of networks to solve the ATR problem represents to some 
extent a break from the traditional MLP classifier solution, especially in the area of unsupervised 
feature extraction and feature learning. Therefore, the results of this thesis are interesting. 

[40] Sutton, Richard S. "Learning to Predict by the Methods of Temporal Difference." Machine 
Learning. 3.9.44, 1988, 9-43. 

The Temporal Difference (TD) class of incremental learning procedures is introduced and defined. 
This method consists of using past experience with an incompletely-known system to predict its 
future behavior. Credit assignment is accomplished by means of the difference between temporally 
successive predictions. This paper argues that most of the problems to which supervised learning 
have been applied (i.e., classification) can really be categorized as prediction problems, and that the 
TD method can be applied to them. The paper describes a brief history of prediction and TD. It 
compares and contrasts the TD approach to prediction with the supervised-learning approach. 
Single-step vs. multi-step predictions are distinguished. It is shown that the linear TD (1) 
procedure produces the same per-sequence weight changes as the Widrow-Hoff learning method, 
but the TD can be computed incrementally. The TD family of learning procedures are described. 
Examples are given which demonstrate that the TD method can converge more rapidly and make 
more accurate predictions than supervised-learning methods. The theoretical foundation of TD is 
provided. Optimality and learning rate are considered. Ways of extending the TD methods to be 
used for more realistic (complex) problems are given. A brief comparison between TD and 
backpropagation focuses on temporal credit assignment vs. structural credit assignment. 

RELEVANCE: The paper discusses problems which involve temporal sequences of observations 
and predictions. Note: This model is more experimental, so investigators must be careful to scale 
the method up so it can handle complex nonlinearities. 

[41] Toomarian, N. "A Concurrent Neural Network Algorithm for the Traveling Salesman 
Problem." Oak Ridge National Laboratory, Oak Ridge, TN, January 1988. 
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This paper presents a solution to the Traveling Salesman Problem using an unsupervised feedback 
learning mechanism based on a continuous synchronous neural network using the Lagrange 
multiplier method to minimize the objective function. The concurrency was achieved using the 
NCUBE hypercube multiprocessor. 

RELEVANCE: The hardware implementability of the network is of interest. 

[42] Tveter, Don. "Getting a Fast Break with Backprop", AI Expert. July 1991, 36-43. 

This paper summarizes some methods of improving the performance of the backpropagation 
learning method. These methods are: (1) periodic vs. continuous weight updates: periodic uses 
less CPU time but requires more iterations; it may enable use of a larger learning rate, promoting 
faster convergence; (2) piecewise linear approximation to replace computing the sigmoid activation 
function; (3) (Fahlman) add a small positive offset to the derivative of the sigmoid, to avoid 
slowness when the output is close to 1 or 0 and the value of the derivative is very small (so very 
little learning takes place); (4) (Chen and Mars) use the differential step-size algorithm: drop the 
derivative of the sigmoid altogether for the output layer, and replace the inner layer learning rate 
with one which is 0.1 of the learning rate for the outer layer. This is recommended for continuous 
weight updates; (5) (Jacobs) Delta-Bar-Delta: adjusting the values of the various learning 
parameters as the network learns. Each weight has its own learning rate which will be changed 
according to how well the network converges. The article illustrates how to implement this. 

The paper contains good pointers to the original papers in the literature. His experiments were 
done on the XOR problem and an encoder problem. His results show that the differential step-size 
algorithm is most effective; he had mixed results with the Delta-Bar-Delta. His conclusion is that 
"there is probably no occasion where using the original method is appropriate" since there are 
several simple techniques which can improve it. 

RELEVANCE: This paper recommended several backpropagation optimization techniques. 

[43] Vemuri, V. "Artificial Neural Networks: An Introduction with an Annotated Bibliography." 
Lawrence Livermore National Laboratory, Livermore, CA, January 27, 1988. 

This paper discusses the biological background of neural networks, presents their evolutionary 
development along with mathematical formalizations, describes how neural networks had been 
implemented to solve real problems as ofthat date, and briefly mentions areas of further research. 

RELEVANCE: This work contains an extensive annotated bibliography, sorted into a variety of 
useful categories such as Historical Works, Survey or Review Material, Contemporary Works, 
and Technologies and Tools. It also contains an excellent reference list. 

[44] Yaworsky, Paul S. and James M. Vaccaro. "Neural Networks, Reliability and Data 
Analysis." RL-TR-93-5. Rome Laboratory, Griffiss Air Force Base, NY, January 1993. 

This paper discusses the importance of being able to understand the knowledge contained in data, 
for Reliability applications. The goal of the authors was to investigate the characteristics of data 
which could then be used to develop automatic methods of statistical data analysis. They built a 
Statistical Neural Network whose architecture was tailored to the content of the input data. 
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RELEVANCE: The work is not directly related to the NNFAF project; however, the discussions 
about data, information, knowledge (and their relationship to neural networks) are important. 

[45] Watrous Raymond L. "Learning Algorithms for Connectionist Networks: Applied Gradient 
Methods of Nonlinear Optimization." TREE First International Conference on Neural Networks, 
Vol. 2, June 1987, 619-627. 

This paper discusses neural network learning as an optimization problem, focussing on iterative 
deterministic gradient methods. The backpropagation algorithm is considered in the context of 
nonlinear optimization. In addition, two higher-order optimization methods (Davidon-Fletcher- 
Powell and Broyden- Fletcher-Goldfarb-Shanno) are considered in light of computational 
complexity, convergence properties, and suitability to parallel machines. These algorithms 
iteratively approximate the second derivative of the objective function. The performance of these 
algorithms is compared to steepest descent and backpropagation. The paper gives a definition of 
optimality via the optimality criterion, or the objective function (which is generally nonlinear). 
Different optimization techniques (search vs. gradient) are compared and it is concluded that 
gradient methods are appropriate were the error surface is smooth and the error is computable, 
whereas search can avoid small local minima if the solution space is sufficiently small. Also, 
stochastic vs. deterministic methods are compared, to show why deterministic methods were 
selected for this study. Methods of steepest descent and quasi-Newton methods are described. 
The backpropagation algorithm is presented, along with a discussion of the effects of learning rate 
and momentum terms. Computational complexity is compared across the four algorithms. The 
paper concludes that first order methods are economical in space but "extravagant" in time. Second 
order methods achieve rapid convergence near the minima but require extra space. The choice 
must be made based on the specific problem requirements. 

RELEVANCE: This was a comparison of backpropagation and other methods of optimization. 

[46] Werbos, Paul J. "Backpropagation Through Time: What It Does and How To Do It." 
Proceedings of the IEEE. Vol. 78, No. 10, October 1990, 1550-1560. 

This paper first reviews basic backpropagation and then presents the basic equations for BPTT. It 
discusses BPTT applications (pattern recognition in dynamic systems, systems identification, and 
control). It provides pseudocode as a means of better understanding the algorithms. It briefly 
discusses (but does not prove) the chain rule for ordered derivatives upon which BP and BPTT are 
based. 

RELEVANCE: This provides an in-depth presentation of the BPTT equations. The pseudocode is 
helpful but is not guaranteed to be correct! 

[47] Williams, Ronald. J. "A Class of Gradient-Estimating Algorithms for Reinforcement 
Learning in Neural Networks." IEEE First International Conference on Neural Networks. Vol. 2, 
June 1987, 601-608. 

This report introduces a new general class of algorithms for solving associative reinforcement 
learning problems using neural networks which are made up of stochastic processing units. This 
algorithm class is called REINFORCE. The algorithms are interesting because they are trained via 
a scalar reinforcement signal fed back to the entire net, they stochastically follow the gradient of a 
performance measure in such problems, making them analogous to the backpropagation method of 
supervised learning, and they have an on-line implementation even for problems of training 
temporally extended behaviors in recurrent networks (not true for backpropagation). The report 
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defines associative reinforcement learning and how the network and its environment interact with 
time-varying data. A distinction is made between this type of learning and supervised learning 
(instructive vs. evaluative environmental feedback). The benefits of associative reinforcement 
learning over supervised learning are discussed. The issue of credit assignment is defined in the 
context of the learning paradigm (combined structural and temporal). Also, definitions of on-line 
and off-line learning are presented. The mathematical derivation of the REINFORCE class 
algorithms is given for both non-temporal and temporal behaviors. 

RELEVANCE: This paper discusses the topic of training temporally extended behaviors in 
recurrent networks. 

[48] Williams, Ronald. J. "On the Use of Backpropagation in Associative Reinforcement 
Learning." IEEE Second Annual International Conference on Neural Networks. Vol. 1, July 
1988, 263-270. 

This paper explains how backpropagation can be used to train networks to perform associative 
reinforcement learning tasks. One method is to train a second network to model the reinforcement 
signal from the environment and then backpropagate through this network into the first. The 
second is to use the REINFORCE algorithm, backpropagate through deterministic parts of the 
network and perform a correlation computation where the network is stochastic. Another is to 
extend the previous method to backpropagate through the stochastic parts of the network also. 
Associative reinforcement learning is defined. It is stated that a supervised learning problem may 
be given to a deterministic-stochastic mixed network The terms "backpropagation" and 
"backpropagation learning algorithm" are distinguished. The mathematical notation for the 
REINFORCE class of algorithms is presented. A discussion is given on how to incorporate 
backpropagation into a reinforcement learning problem. These types of networks are experimental 
and more research and analytical investigation is required. The paper explains how the 
REINFORCE algorithms are related to backpropagation and explains how a REINFORCE 
algorithm must, work in a network containing both deterministic and stochastic units: the 
REINFORCE computation is made at stochastic units, and backpropagation is used through the 
deterministic units. The concept of "backpropagating through a random number generator" is 
presented. The applicability to supervised learning and search properties using continuous 
multiparameter distributions are discussed. 

RELEVANCE: This approach lends itself to the "creation of algorithms able to take advantage of 
both [stochastic and deterministic] types of information." 

[49] Williams, Ronald. J. and Jing Peng. "An Efficient Gradient-Based Algorithm for On-Line 
Training of Recurrent Network Trajectories." Neural Computation 2, 1990, 490-501. 

This paper discusses a variation of the backpropagation through time (BPTT) learning algorithm 
which is intended to be used on continuously running recurrent networks for temporal supervised 
learning tasks such as sequence classification or sequence production (both inputs and/or outputs 
may be time-varying). It has been designed specifically for efficient computation. It is called a 
cross between "epochwise" BPTT and "truncated" BPTT and is abbreviated BPTT(h-h') 
Recurrent network learning algorithms are reviewed, specifically BPTT, real-time recurrent 
learning (RTRL), and recurrent backpropagation. Five important properties of the hybrid 
algorithm are given: on-line learning, general purpose, designed to train networks to perform 
arbitrary time-varying behaviors, designed for time-efficient implementation, minimizes 
computation per time tick, experimentally verified. It is believed to provide the "computational 
efficiency of BPTT while retaining the on-line character of RTRL". Formal assumptions and 
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definitions are given for the network architecture (semi-linear) and dynamics (discrete-time).A 
n^k^SbiKe measure is given for a sequential supervised learning task. The related 
S^h^^h^BPTT, real- time BPTT, and truncated BPTT are discussed and the 
f™ted BPTTK) algorithm is presented and compared to epochwise and truncated BPTT. 
SÄS^SfÄS is discussed; results are presented in a similar report. Some 
implications and benefits of the algorithm are discussed. 

RELEVANCE: Learning arbitrary time-varying behaviors is directly applicable. 

[50] Williams, Ronald. J. and David Zipser. "A Learning Algorithm for Continually Running 
Fully Recurrent Neural Networks." Neural Computation, 1, 1989, 270-28U. 

[51] Williams, Ronald J. and David Zipser. ''Experimental Analysis of the Real-Time Recurrent 
Learning Algorithm." Connection Science. Vol. 1, No. 1, 1989, pp. 87-111. 

These oaoers discuss the real-time recurrent learning (RTRL) algorithm type for recurrent 
Ltworkfrtinnrng com nually, as a candidate for solving temporal supervised learning tasks. 
Se networks ca£ learn task which require retention of information over varying-length time 
JS^Äeriments are described and the resultspresented^^^X» ^^ 
recognition, learning to be a Turing machine, learning to oscillate. NOTE. These algorithms are 
computationally expensive and require non-local network communication. 

RELEVANCE: The problem of temporality is addressed. NOTE: This model is still very 
experimental. 

[52] Zahirniak, D. R. "Probabilistic Classification Using Radial Basis Function Neural 
Networks." June 26, 1992. 

This paper discusses probabilistic classification methods and shows how three can be implemented 
using neural networks: K-nearest neighbor (KNN), probabilistic neural network (PNN)and 
3 basis function neural network (RBF). The paper concludes that RBFperforms as wdas the 
optimal KNN or PNN networks but is less sensitive to the network parameters RBh uses the 
weights connecting hidden layer nodes to the output layer nodes to desensitize the classification 
performance. RBF is a supervised learning method. 

RELEVANCE: RBF is one of the new models which will be available with the next Neuralworks 
upgrade. 

[53] Zipser, David. "A Subgrouping Strategy that Reduces Complexity and Speeds Up Learning 
in Recurrent Networks." Neural Computation, Vol. 1, No. 4, 1989, 552-558. 

A maior drawback of recurrent networks is the computation time needed to update the encoding of 
the historical information (P): in a network with N recurrently-connected units and M external 
units there are N P values associated with each weight. This method divides the original network 
into subnets for error propagation, while leaving it undivided for activity propagation. It reduces 
the computation time without changing the connectivity. 

RELEVANCE: This paper presents a solution which could improve the suitability of recurrent 
neural networks to solving large-scale real-world problems. 
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15   APPENDIX D.   NEURAL NETWORK DEFINITIONS OF TERMS 

II/PLUS^nd NeuralWorks Explorer) by NeuralWare  Inc., 1991, and the DARPA N^iai 
Network Study. AFCEA International Press, November, 1988. 

1    ADALINE (ADaptive Linear NEuron, Widrow, 1959): A member of a family of trainable 

biological learning. 

? ART 1 (Adaptive Resonance Theory 1, Grossbery, 1976): An unsupervised neural network 
mÄÄSSSlion. The network discovers pattern classifications on its own in 
SaÄlt foKtegSte? to Siput data, with the granularity of the categories determined by a 
virilanS DaraSeter The learning method is based on the assumption that inputs which share a 
X^nSTfJnrls should fall into the same category. ART-1 was designed to classify 

binary input patterns. 

3 ART-2 (Adaptive Resonance Theory 2, Grossberg and Carpenter, 1987): ART-2 is similar to 
ART-1 except that it was designed to classify analog inputs. 

4.   Annealing schedule: See recall schedule. 

5 AssodatiyeMemnry.: A memory which allows retrieval of information by presentation of 
fnexJto?incomdeSsmred memory keys. In an associative memory network, the memory units 
Se the connection weights art theVues of the weights are the current state of the network 
toowTedge The network is presented with an input and it must respond with the associated 
Xu If a tSned ^twork is presented with a partial input it will choose the ctosest matchL in 
memory to that input, and generate an output which corresponds to a full input. If the network is 
SSSScSati^ then presentation of a partial input will result in its completion by the ne worL 
These networks are also known as content-addressable memories and the learning method is also 
called associative learning. 

6. Asynchronous mode: In this mode, processing elements fire randomly and independently of 
others. 

7 BFTT (Backpropagation Through Time, Rumelhart, Hinton & Williams, 1986): An extension 
of the^ckVropagatiln learning method which can be used with problems that involve system 
dvnamfc "Septime. The output error is propagated back through the time path in this model 
Since the propagation progresses backwards, the model requires a memory of previous time 
periods. 

8 Rar.Vr,ronagation (Parker/Rumelhart, 1985/1986): A learning algorithm for updating weights in 
amultikyeTS?ward network that minimizes mean squared mapping error (error betweenX he 
designed output of the network and the actual output). It distributes the responsibility for he 
output error across all elements and connections by propagating it backward through the 
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connections to the previous layer, and repeating until the input layer is reached. This is one of the 
most utilized network models. 

9. BAMJBidirectional Associative Memory, Kosko, 1987): A hetero-associative version of the 
Hopfield network. 

10 Bpltzmann Machine (Ackley, Hinton & Sejnowski, 1985): A supervised learning algorithm in 
which network states are determined by "simulated annealing." This type of network uses a noise 
process to find the global minimum of a cost function. 

11.. ££N (Compound Classifier Network, 1989): This is a network which classifies inputs 
against templates by a nearest neighbor algorithm. It utilizes dynamic hidden node allocation when 
an input is not sufficiently similar to an existing template. This model is similar to Nestor's 
Restricted Coulomb Energy (RCE) model. 

12. Cascade Correlation (Fahlman, 1990): This is a type of supervised learning, multilayer 
network in which new hidden nodes are added one at a time. Its purpose is to predict the current 
remaining output error in the network and reduce it by creating the new hidden node First the 
new hidden node is correlated with the current network error, and then the new node is added to 
the network to form a cascade. 

13. Competition: A method of neural network learning which involves intra-layer processing 
element interaction. Only one or a few elements win and therefore produce an output Lateral 
inhibition is sometimes used to effect this. ' 

If- Competitive Turning: An unsupervised learning algorithm in which groups of processing 
elements compete to respond to a set of stimulus input patterns. The winner within each group is 
the one whose connections make it respond most strongly to the pattern; the winner then adjusts its 
connections slightly toward the pattern that it won. J 

15 Connectivity: Types of interconnections between processing elements. A network can be 
fully locally, or sparsely connected. Networks may also be layered, and the elements in the layers 
can be connected by means of feedback or feedforward connections. V 

16 Convergence: In some networks, after a finite number of presentations of training data the 
values of the network s weights approach the set of values which represent the classification which 
has been provided in the training data. 

IJ- QmmmmiÄSMm (Hecht-Nielsen, 1987): This is a nearest- neighbor classifier which 
selects from a set of exemplars (templates) by allowing them to compete against each other and 
selecting one winner. The winner is then decoded into a classification. 

and ^te^fJ/^T^ ^«F™« method>the goal is to reduce the error between the actual 
and the expected outputs by modifying incoming connection weights. 

19^Ej^y^uncii2ni Each network state has an energy value which is defined by the output of its 
processing element^ The recall process iteratively modifies the network state so that the system's 
energy decreases. This results in a state which represents a local minimum in the eneiy surface 

20. Fanjn: The number of processing elements that excite or inhibit a given unit. 
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21. Fan Out: The number of processing elements directly excited or inhibited by a given unit. 

22 F^hack Network: A network in which some of the connections feed backwards through the 
network. Sometimes feedback is used to create time-sensitivity. 

23 TWHfnrward Network: A network in which all the connections are from lower layers to 
MghCT UtyS and there are no feedback connections from one layer to another or from one layer o 
itsdf In these networks, information is passed from the input layer possibly through middle 
layers, to the output layer. Often this transfer of information involves the use of a transfer 
function. 

24 Generalization: The capability of the network to respond with a reasonable response when it 
is presented with incomplete, noisy, or previously unseen input. 

25 Hamming Network (Lippmann, 1987): This network implements a minimum error^pattern 
classifier for binary vectors where the error is defined using the Hamming distance. It is also 
called the unary model. 

26 He.hhian Learning: In this learning method, a connection weight is increased if both its input 
and the desired output are high. This correlates biologically to the activation on each side of a 
neural synapse. 

27 Hidden Units: These are the processing elements of a network which are neither in the input 
layer nor the output layer. They are located between these two layers (in the hidden layer) and 
allow the network to perform more complex problem-solving (non- linear mapping). 

28 Honfield Network (Hopfield, 1982): This is a fully-connected, feedback network which uses 
unsupervised learning as a pattern classifier. It can also be used to solve combinatorial 
optimization problems such as the Traveling Salesman. It is also called the Cross-bar Associative 
Network. 

29 Kohonen SOM (Self-Organizing Map, Kohonen, 1979-1982): This is an unsupervised model 
used for optimization and pattern classification. It does not require explicit training of input-output 
correlations but "spontaneously self-organizes." It is used to visualize topologies and hierarchical 
structures of higher-dimensional input spaces. 

30 LVO_ (Learning Vector Quantization, Kohonen, 1988): This network assigns vectors to 
classes. It uses a Kohonen (SOM) layer to learn and perform the classification. 

31. Learning: Adapting connection weights in response to stimuli presented at input (and 
optimally) at output. 

32 Timing Algorithms: These are the equations which modify (some of) the weightsof 
processing elements in response to input signals and values provided by the transfer function. The 
learning algorithms allow the processing elements' responses to inputs to change (learn) over time. 
A learning algorithm is also called a learning rule. 

33. MADALINE (Multiple ADALINE, Widrow, 1960): This is a network of ADALINES 
cascaded together so that non-linearly separable problems may be addressed. 
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34. Multi-laver Perceptron (Rosenblatt): A multi-layer feedforward network that is fully 
connected and is typically trained by the backpropagation learning algorithm. 

35. Neocognitron (Fukushima, 1980): This is a pattern classifier which combines an 
unsupervised learning algorithm with a multi-layer architecture. It is tolerant of positional shifts, 
geometric distortion, and scale variation. 

36. Normalisation: Normalization takes the vector of values corresponding to the output of a 
complete network layer and scales it so that the total output is some fixed value. The result is that 
the total activity in the layer remains approximately constant. 

37. Qn-Ling Learning: On-line learning is also referred to as adaptive learning or self-supervised 
learning. The network learns in real time. There is no distinct training period, as there is with 
supervised learning. 

37. PNÜ (Probabilistic Neural Network, 1988): This is a neural network implementation of the 
Bayesian classifier statistical method. The PNN uses training data to develop distribution 
functions that are used to estimate the likelihood of a feature (input) being within a category (class). 

38. EIRL_(Real-Time Recurrent Learning, Williams & Zipser, 1989): This is a newer, more 
theoretical model which is recurrent and can deal with time-varying input or output. 

39. Recall: How the network processes a stimulus presented at the input and thereafter creates a 
response at the output. 

40. Recall Schedule: A method of controlling recall parameters as the reverberation progresses (in 
a feedback network). 

41. Regulation (Hinton & McClelland, 1988): This is an alternative to a backpropagation 
network in which errors are passed backwards through the feedforward connections. In this 
model, data is processed only in one direction, and connections are both forward and back. It uses 
the same learning rule as backpropagation; the connections are separated so that a hardware 
implementation might be less difficult 

42. RFJNFORCF, (Williams, 1987): This is a class of gradient- estimating algorithms for 
reinforcement learning. It is an on- line learning method which can learn temporal behavior. 

43- RgiPforcemgm Learning: An external "teacher" or "critic" indicates by a scalar value (often 
binary) whether the system's response to an input is "good" or "bad". The expected output is not 
shown to the system, as is the case in supervised learning. It requires a reinforcement signal as 
training feedback. 6 

44. Relaxation: This is the idea that computation proceeds by iteratively seeking to satisfy a large 
number of weak restraints. Connections represent constraints on the co- occurrence of pairs of 
processing elements. The network settles (relaxes) into a solution rather than calculating it. 

45. Reverberation: Information reverberates in the network until some convergence criterion is 
met; then the information is passed to the output. This occurs in feedback networks. 

46. Self-Qrgani^ation: This is the method of autonomous modification of the network system 
dynamics via learning in some or all of its connections to achieve a specified result. 
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47 elf-gyp™^ Training: A means of training adaptive neural networks^ Self-supervision is 
uLffauSSi which lequTre internal error feedback to perform some specific task. 

48 *™i«t^ Annealing: A stochastic computational technique derived from statistical mechanics 
for finding near globally-minimum cost solutions to large optimization problems. 

49 Qin.wj.vttr Percentron (Rosenblatt, 1957): This is a trainable pattern classifier which 
classifies us nglTnea? discriminate functions. It is one of the original neural network models. Its 
S was to model the pattern recognition capability of the visual system. It is very similar to the 
ADALINE  Its major weakness is tnat it cannot be used for non-hnearly separable problems. 

50 Srnti- T—P-fl1 pat?*™ Reropnition (Hecht-Nielsen, 1986): This model is a classifier used 
to rSff £Senge?of events over time. It can be used for recognizing repetition, for 
example, repeating signals. Also, the Kurogi model. 

M SuDervisedLearning: The system is trained to respond to a given input with a corresponding 
oum'u^sKinl'itthe expected output. This is accomplishedin ™«*™yf ££?£& 
Hebbian learning, Delta Rule learning, or competitive learning (competition).  It is also called 
hetero-associative learning. 

52. ftynr.hmnons Mode: In this mode, all or selected elements fire simultaneously at each time 

step. 

«   TVmnoral Difference (Sutton, 1988): A class of incremental learning procedures which are 
p'eÄfflSf (Stag past experience wnh an incomple.ely known g™r^c„,S 

future behavior)    This method assigns credit for error by means of the difference between 
SSnSty sSssive predictions. Leaning occurs when there is a change in prediction over time. 

54 Transfer Function: The mathematical function used to controlI the output of a processing 
eltmenC^on transfer functions are: hard limit (threshold), which hrmts the output to either 0 
or 1; linear, with which the output can equal the input; and sigmoid, which squashes the input into 
a range. 

55 Unsuoervised learning: The system receives only input stimuli; the network iteratively 
orgardzeS^iaShfelf so that each processing element responds strongly to a different set 
of input stimuli. These response sets represent clusters in the input space which may represent 
distinct real world concepts. 

56 Weight- The value or strength of a neural network processing element's connection to another 
elenienLAil weights input to an element are combined into a simple value in order to update the 
processing element's potential. 
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16. APPENDIX E.    NNFAF BIT TECHNIQUE FAULT SIGNATURES 

This appendix contains visuaüzations of the NNFAF BIT Technique fault signatures. The figures 
show fault report status to the left of each signature and sampling rate below each signature. 
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17. APPENDIX F.   FAULT REPORT CAUSE CURVE FILES 

The default environmental curve files were generated using mathematical functions. This made any 
curve adjustments, such as scaling and number of sample points, easy to accomplish It also 
facilitated analytical analyses of the curves at various points, because each curve is modeled by an 
equation However, it is important to understand that the environmental curves are representations 
of curve shapes that may be possible for various environmental conditions The most significant 
characteristics of the three curves are that they have very different shapes. The uniqueness of each 
shape type will be useful in determining how well the neural networks can perform with each of 
the types The curves were represented mathematically because it makes modification and 
evaluation easier, and not because they are intended to be exact mathematical models of actual 
environmental conditions. 

17.1 Temperature Curve 

The temperature curve was designed to be a relatively smooth curve starting at a low magnitude, 
increasing to a peak, and then decreasing to a low magnitude. The changes in magnitude are 
gradual because the effect of temperature within an electronic system is usually gradual due to the 
conduction and convection cooling which exists within typical systems. The curve is represented 
with a peak at the center because this is easy to model and real data coming from an operational 
system can easily be formatted such that the peak is at a center point. 

The temperature curve function is based on a sine function which was then adjusted using 
exponents and a line. These various functions were used to take a basic sine shape and make the 
rate of change in the sine curve more gradual. The resulting functions are: 

.  (1) Y = [ (Sine(x) + 2)005 - 0.99 ] / [ (3005 - 0.99) + 0.08x - 0/0.08 ] 
where -3.14<x<0 

and 

(2) Y = [ (Sine(x) + 2)0-05 - 0.99 ] / [ (3a05 - 0.99) + 0.08(l-x) - 0/0.08 ] 
where 0<x<3.14. 

Equation (1) is mixing the exponentially adjusted sine function with a line of gradually increasing 
slope. Equation (2) is mixing the exponentially adjusted sine function with the same line, but of 
gradually decreasing slope. The exponential adjustments and the line both help to smooth the sine 
curve into a smaller rate of change in curve slope. The resulting temperature curve is shown in 
Figure F-l. 
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Figure F-l.   Default Temperature Curve 

17.2 G-Load Curve 

The G-Load curve is represented as a low magnitude with a very rapid increase to a peak that stays 
constant for a period of time and then rapidly decreases to a low magnitude again. This curve is 
meant to represent the magnitude of G-load when an aircraft executes a maneuver or steep turn, or 
when an aircraft has hit a large air pocket. 

The function used for the G-load curve is: 

(3) Y-£ 
where -2 < X < 2 and Y=4 if Y>4. 

The range of x was selected to produce the desired shape, or rate of change in the symmetric 
increase and decrease in the curve magnitude. 

The resulting G-load curve is shown in Figure F-2. 
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Figure F-2.   Default G-Load Curve 

17.3 Vibration Curve 

Describing a vibration curve in relation to its effect on a system's BIT is very difficult. Many 
vibration curves exist for various system platform types. Several vibration profiles exist within the 
same platform depending upon the location of the unit under consideration. These vibration 
profiles usually consist of magnitude and ranges of frequencies. For an aircraft they may include 
frequencies in the range from 10 to 2000 Hz. The vibration experienced by a unit can therefore 
appear to be a realm of random frequencies. However, when these random frequencies are 
intoduced to a unit, the frequencies with the greatest impact to the unit are the unit s resonant 
frequencies. The resonant frequencies are natural frequencies inherent in the physical layout of the 
unit. As a result, even though the frequencies at the platform are for the most part random, natural 
frequencies will appear at the unit. 

The curve was based on the vibration that would be experienced on a typical circuit card (resonant 
frequencies) within a typical SATCOM system. The resonant frequencies within the card are 140 
Hz (first mode), 386 Hz (second mode), and 756 Hz (third mode). More resonant modes exist but 
they are too small to be included. The resonant frequencies were generated using an Angular 
Natural Frequency equation [Harris] for a fixed-fixed (built-in) assembly. The magnitude of the 
resonant frequencies decreases with each higher-order mode, representative of the magnitude 
decrease for harmonics. The vibration equation is a combination of first, second, and third order 
resonant frequency modes that have peak magnitudes of 0.7, 0.25, and 0.05 respectively. This 
curve is shown in Figure F-3. 
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Figure F-3.   Default Vibration Curve 
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18. APPENDIX G.   EXAMPLE FAULT SIGNATURE DATA FILES 

This appendix contains examples of the different fault signature data files which can be generated 
by the NNFAF BIT simulator. There are four levels of BIT fault reporting which are represented: 
source level, intermediate (LRU) level, global fault table (GFT) level, and composite global fault 
table. The composite global fault table files contain fault reports from all simulated BIT 
techniques. The source, LRU, and composite GFT files were used as input to the neural 
networks. 

The examples for the G-Load/Parity approach at LRU and GFT levels show the complete file (fault 
signature), including the signature classification at the end of the signature. All others show a few 
lines from the fault signature file. In fact, most of these files were substantially larger. 

18.1 Source Level Data Files 

The source level data files represent simulated BIT fault reports which can be captured at their 
source. 

18.1.1   G-Load/Parity 

! Approach: G-Load/Parity 
! Curve File: CURVES/default.gp 
! Boundary: 0.900000 
! Threshold: 0.500000 
!Seed : 1 
0 0 0.062500 
200 0 0.062500 
400 0 0.062500 
600 0 0.062500 
800 0 0.062500 
1000 0 0.062500 
1200 0 0.064600 
1400 0 0.064600 
1600 0 0.066900 
1800 0 0.066900 
2000 0 0.069300 
2200 0 0.069300 
2400 0 0.069300 
2600 0 0.071700 
2800 0 0.071700 
3000 0 0.074400 
3200 0 0.074400 
3400 0 0.074400 
3600 0 0.077200 
3800 0 0.077200 
4000 0 0.077200 
4200 0 0.080100 
4400 0 0.080100 
4600 0 0.083200 
4800 0 0.083200 
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18.1.2  Vibration/Parity 

! Approach: Vibration/Parity 
! Curve Füe: CURVES/default.vp 
! Boundary: 0.900000 
! Threshold: 0.300000 
! Seed: 24 
0 1 0.601100 
20       0 0.060200 
40        1 0.375700 
60       1 0.834900 
80       1 0.742500 
100      1 0.414400 
120     0 0.259300 
140     0 0.297900 
160      1 0.586600 
180      1 0.867400 
200      1 0.592200 
220     0 0.095700 
240     0 0.277100 
260      1 0.859700 
280      1 0.825500 
300      1 0.305600 
320     0 0.164300 
340      1 0.436800 
360      1 0.671800 
380      1 0.751500 
400      1 0.575400 
420     0 0.201600 
440     0 0.232900 
460      1 0.770000 
480      1 0.893800 

18.1.3 Temperature/Activity Detector 

! Approach: Temperature/Activity Detect 
! Curve Füe: CURVES/defaultta 
! Boundary: 0.900000 
! Threshold: 0.300000 
! Seed: 35 
3980 0 0.072500 
7980 0 0.072500 
11980 0 0.072500 
15980 0 0.072500 
19980 0 0.072500 
23980 0 0.072500 
27980 0 0.072500 
31980 0 0.072500 
35980 0 0.072500 
39980 0 0.072500 
43980 0 0.072500 
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47980 
51980 
55980 
59980 
63980 
67980 
71980 
75980 
79980 
83980 
87980 
91980 
95980 

! Approach: 
! Curve File 
! Boundary: 
! Threshold 
! Seed: 42 
7980 
15980 
23980 
31980 
39980 
47980 
55980 
63980 
71980 
79980 
87980 
95980 
103980 
111980 
119980 
127980 
135980 
143980 
151980 
159980 
167980 
175980 
183980 
191980 
199980 
207980 
215980 
223980 
231980 
239980 

0 0.072500 
0 0.072500 
1 0.072500 
0 0.072500 
0 0.083700 
0 0.083700 
0 0.083700 
0 0.083700 
0 0.083700 
1 0.083700 
0 0.083700 
0 0.112600 
0 0.112600 

nperati ire/V terbi 

Temperature/Viterbi 
: CURVES/default.tv 
0.900000 

: 0.300000 

0 0 0.072500 
0 0 0.072500 
0 0 0.072500 
0 0 0.072500 
0 0 0.072500 
0 0 0.072500 
0 0 0.072500 
0 0 0.083700 
0 0 0.083700 
0 0 0.083700 
0 0 0.083700 
0 0 0.112600 
0 0 0.112600 
0 0 0.112600 
0 0 0.112600 
0 0 0.156600 
0 0 0.156600 
0 0 0.156600 
0 0 0.212700 
0 0 0.212700 
0 0 0.212700 
0 0 0.212700 
0 0 0.277100 
0 0 0.277100 
0 0 0.277100 
0 0 0.277100 
21 0 0.346500 
23 0 0.346500 
24 0 0.346500 
23 0 0.346500 
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18.2 Intermediate (LRU) Status Level Data Files 

The intermediate (LRU) level files represent the BIT fault reports which would be accessible at the 
LRU level. A certain amount of fault report compression might have occurred at this level. The 
default reporting c ;ycle at the LRU level was simulated to be 1 second. 

18.2.1   G-Load/Parity 

! Approach: G-Load/Parity 
! Curve File: CURVES/default.gp 
! Boundary: 0.900000 
! Threshold: 0.500000 
! Seed: 1 
0                    0 0.062500 
1000               0 0.062500 
2000               0 0.069300 
3000               0 0.074400 
4000               0 0.077200 
5000               0 0.086500 
6000               0 0.093700 
7000               0 0.097700 
8000               0 0.111100 
9000               0 0.121700 
10000             0 0.127600 
11000             0 0.147900 
12000             0 0.164400 
13000             0 0.173600 
14000             0 0.206600 
15000             0 0.234100 
16000             0 0.250000 
17000             0 0.308600 
18000             0 0.360000 
19000             0 0.390600 
20000             0 0.510200 
21000             0 0.623300 
22000             0 0.694400 
23000             1 1.000000 
24000             1 1.000000 
25000              1 1.000000 
26000              1 1.000000 
27000              1 1.000000 
28000              1 1.000000 
29000             1 1.000000 
30000             1 1.000000 
31000             1 1.000000 
32000             1 1.000000 
33000             1 1.000000 
34000             1 1.000000 
35000             1 1.000000 
36000             1 1.000000 
37000             1 1.000000 
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38000 
39000 
40000 
41000 
42000 
43000 
44000 
45000 
46000 
47000 
48000 
49000 
50000 
51000 
52000 
53000 
54000 
55000 
56000 
57000 
58000 
59000 
-3   0 

1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1.000000 
0.778500 
0.694400 
0.510200 
0.425300 
0.390600 
0.308600 
0.267500 
0.250000 
0.206600 
0.183700 
0.173600 
0.147900 
0.133800 
0.127600 
0.111100 
0.101900 
0.097700 
0.086500 
0.080100 
0.077200 
0.069300 

18.2.2 Vibration/Parity 

! Approach: Vibration/Parity 
! Curve Füe: CURVES/default.vp 
! Boundary: 0.900000 
! Threshold: 0.300000 
! Seed: 24 
0 0 0.601100 
1000 0 0.214500 
-3        0 0 

18.2.3 Temperature/Activity Detector 

! Approach: 
! Curve File 
! Boundary: 
! Threshold: 
! Seed:35 
3980      0 
7980 
11980 
15980 
19980 
23980 
27980 
31980 
35980 

0 
0 
0 
0 
0 
0 
0 
0 

Temperature/Activity Detect 
CURVES/defaultta 
0.900000 
0.300000 

0.072500 
0.072500 
0.072500 
0.072500 
0.072500 
0.072500 
0.072500 
0.072500 
0.072500 
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39980 0 0.072500 
43980 0 0.072500 
47980 0 0.072500 
51980 0 0.072500 
55980 1 0.072500 
59980 0 0.072500 
63980 0 0.083700 
67980 0 0.083700 
71980 0 0.083700 
75980 0 0.083700 
79980 0 0.083700 
83980 1 0.083700 
87980 0 0.083700 
91980 0 0.112600 
95980 0 0.112600 
99980 0 0.112600 

18.2.4 Temperature/Viterbi 

! Approach: Temperature/Viterbi 
! Curve File: CURVES/default.tv 
! Boundary: 0.900000 
! Threshold: 0.300000 
! Seed: 42 
7980 0 0   0.072500 
15980 0 0   0.072500 
23980 0 0   0.072500 
31980 0 0   0.072500 
39980 0 0   0.072500 
47980 0 0   0.072500 
55980 0 0   0.072500 
63980 0 0   0.083700 
71980 0 0   0.083700 
79980 0 0   0.083700 
87980 0 0   0.083700 
95980 0 0   0.112600 
103980 0 0   0.112600 
111980 0 0   0.112600 
119980 0 0   0.112600 
127980 0 0   0.156600 
135980 0 0   0.156600 
143980 0 0   0.156600 
151980 0 0   0.212700 
159980 0 0   0.212700 
167980 0 0   0.212700 
175980 0 0   0.212700 
183980 0 0   0.277100 
191980 0 0   0.277100 
199980 0 0   0.277100 
207980 0 0   0.277100 
215980 26 0   0.346500 
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223980 
231980 

31 0 
29 0 

0.346500 
0.346500 

18.3 Global Fault Table (GFT) Status Level Data Files 

The GFT level fault reports are significantly compressed by 'oring' of the original fault reports 
over the GFT reporting cycle. The default GFT reporting cycle was simulated to be 5 seconds. 

18.3.1   G-Load/Parity 

! Approach: G-Load/Parity 
! Curve File: CURVES/default.gp 
! Boundary: 0.900000 
! Threshold: 0.500000 
! Seed: 1 
0                    0 0.062500 
5000               0 0.086500 
10000             0 0.127600 
15000             0 0.234100 
20000             0 0.510200 
25000              1 1.000000 
30000              1 1.000000 
35000              1 1.000000 
40000             1 0.694400 
45000             0 0.267500 
50000             0 0.147900 
55000             0 0.097700 
-3        0         0 

18.3.2 Vibration/Parity 

! Approach: Vibration/Parity 
! Curve File: CURVES/default.vp 
! Boundary: 0.900000 
! Threshold: 0.300000 
! Seed: 24 
0 1 0.601100 
-3        0 0 

18.3.3 Temperature/Activity Detector 

! Approach: Temperature/Activity Detect 
! Curve File: CURVES/default.ta 
! Boundary: 0.900000 
! Threshold: 0.300000 
! Seed: 35 
15000 0 0.072500 
35000 0 0.072500 
55000 1 0.072500 
75000 0 0.083700 
95000 1 0.112600 
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115000 0 0.112600 
135000 0 0.156600 
155000 0 0.212700 
175000 0 0.212700 
195000 0 0.277100 
215000 0 0.346500 
235000 0 0.346500 , 

255000 2 0.417900 
275000 1 0.488900 
295000 3 0.488900 
315000 4 0.557700 
335000 4 0.623000 
355000 4 0.623000 
375000 4 0.683700 
395000 4 0.739300 
415000 4 0.739300 
435000 4 0.789100 
455000 4 0.832900 
475000 4 0.832900 
495000 4 0.870500 

18.3.4 Temperature/Viterbi 

! Approach: Temperature/Viterbi 
! Curve File: CURVES/default.tv 
! Boundary: 0.900000 
! Threshold: 0.300000 
! Seed: 42 
15000 0 0 0.072500 
35000 0 0 0.072500 
55000 0 0 0.072500 
75000 0 0 0.083700 
95000 0 0 0.112600 
115000 0 0 0.112600 
135000 0 0 0.156600 
155000 0 0 0.212700 
175000 0 0 0.212700 
195000 0 0 0.277100 
215000 1 0 0.346500 
235000 4 0 0.346500 
255000 4 0 0.417900 
275000 4 0 0.488900 
295000 4 0 0.488900 
315000 4 0 0.557700 
335000 4 0 0.623000 
355000 4 0 0.623000 
375000 4 0 0.683700 
395000 4 0 0.739300 
415000 4 1 0.739300 
435000 4 0 0.789100 
455000 4 1 0.832900 
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475000           4         0 0.832900 
495000           4         0 0.870500 

18.4 Composite GFT Status Level Data Files 

The composite GFT files contain the same : level of BIT fault reporting as the GFT files. They also 
contain fault reports for all of the simulated LRUs. 

18.4.1   G-Load/Parity 

! Approach: G-Load/Parity 
! Curve File: CURVES/default.gp 
! Boundary: 0.900000 
! Threshold: 0.500000 
! Seed: 1 
0                    0         0 0 0 0 0.062500 
5000               0         0 0 0 0 0.086500 
10000             0         0 0 0 0 0.127600 
15000             0         0 0 0 0 0.234100 
20000             0         0 0 0 0 0.510200 
25000             0         0 0 1 1 1.000000 
30000             0         0 0 1 1 1.000000 
35000             0         0 0 1 1 1.000000 
40000             0         0 0 1 1 0.694400 
45000             0         0 0 0 0 0.267500 
50000             0         0 0 0 0 0.147900 
55000             0         0 0 0 0 0.097700 
-3        0         0 

18.4.2  Vibration/Parity 

! Approach: Vibration/Parity 
! Curve File: CURVES/default.vp 
! Boundary: 0.900000 
! Threshold: 0.300000 
! Seed: 24 
0         0         0         0 0 1 0.601100 
-3        0         0 

18.4.3 Temperature/Acti vity Detector 

! Approach: Temperature/Activity Detect 
! Curve File: CURVES/defaultta 
! Boundary: 0.900000 
! Threshold: 0.300000 
! Seed: 35 
15000             0         0 0 0 0 0.072500 
35000             0         0 0 0 0 0.072500 
55000              1          1 1 0 0 0.072500 
75000             0         0 

■ 

i 

0 0 0 
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95000 1 1 1 0 0 0.112600 
115000 0 0 0 0 0 0.112600 
135000 0 0 0 0 0 0.156600 
155000 0 0 0 0 0 0.212700 
175000 0 0 0 0 0 0.212700 
195000 0 0 0 0 0 0.277100 
215000 0 0 0 0 0 0.346500 
235000 0 0 0 0 0 0.346500 
255000 2 2 2 0 0 0.417900 
275000 1 1 1 0 0 0.488900 
295000 3 3 3 0 0 0.488900 
315000 4 4 4 0 0 0.557700 
335000 4 4 4 0 0 0.623000 
355000 4 4 4 0 0 0.623000 
375000 4 4 4 0 0 0.683700 
395000 4 4 4 0 0 0.739300 
415000 4 4 4 0 0 0.739300 
435000 4 4 4 0 0 0.789100 
455000 4 4 4 0 0 0.832900 
475000 4 4 4 0 0 0.832900 
495000 4 4 4 0 0 0.870500 

18.4.4 Temperature/Viterbi 

! Approach: Temperature/Viterbi 
! Curve File: CURVES/default.tv 
! Boundary: 0.900000 
! Threshold: 0.300000 
! Seed: 42 
15000 
35000 
55000 
75000 
95000 
115000 
135000 
155000 
175000 
195000 
215000 
235000 
255000 
275000 
295000 
315000 
335000 
355000 
375000 
395000 
415000 
435000 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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0.072500 
0.072500 
0.072500 
0.083700 
0.112600 
0.112600 
0.156600 
0.212700 
0.212700 
0.277100 
0.346500 
0.346500 
0.417900 
0.488900 
0.488900 
0.557700 
0.623000 
0.623000 
0.683700 
0.739300 
0.739300 
0.789100 



455000 4 1 1 0 0 0.832900 

475000 4 0 0 0 0 0.832900 

495000 4 0 0 0 0 0.870500 
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19. APPENDIX H. IMPACT STUDY COST/BENEFIT DISPLAY SPREADSHEET 

This appendix contains an example of the Cost/Benefit Display Spreadsheet which was developed 
to present the cost/benefit tradeoffs of implementing neural network false alarm filtering technology 
in communications systems of differing characteristics. The spreadsheet below was prepared to 
illustrate the types of input parameters and the resulting display. The example shows the 
cost/benefit analysis for implementing REINFORCE neural network false alarm filtering in a 
mature system. 
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PARAMETERS 

System Nam«: Eiampte System 

System Maturity: Maajre 

NN Typ«: REINFORCE 

Number ot Systems: 

MT1F: 

Remaining Years of 8«rvie«: 

Mission Duty Cycl«: 

Coal Initial FAR: 

Plotting Nüal FAR: 

Cost p«r repair acaonfSK): 

Avg cost per AborK.SK): 

Other Filed Sevinge(SK): 

K1: 
K2 

450 

425 

10 

0.H 

20.0% 

xtm. 
s 

20 

From Benetl Sheet 

Rom Benelt Sheet 

From Bertelt Sheet 

From Cost Sheet 

From Coat Sheet 

FAR Savings 

Total Proisct 

NN Costs Nat Savinas 

Par System 

NN Costs Nst 

20 00% $9 $37,920 ($37,911) $0 $84 ($«4) 

19.00% $10.100 $39,361 ($29,261) $22 $87 ($65) 

18 00% $19.945 $40.953 ($21,008) $44 $91 ($47) 

17.00% »29,653 $42,723 ($13,170) $66 $96 ($29) 

1600% (38.932 $44,702 ($5.770) $87 $99 ($13) 

1500% $48,090 $46,932 $1.159 $107 $104 $3 

14.00% $58,636 $49,463 $9.373 $131 $110 $21 

13.00% $67,594 $52,364 $15.231 $150 $116 $34 

1200% $76,154 $55,723 $20,431 $169 $124 $45 

11 00% $84,522 $59,683 $24,860 $166 $133 $55 

10.00% $92,705 $64,351 $28.354 $206 $143 $«3 

9.00% $100,708 $70,029 $30,678 $224 $166 $68 

8.00% $106,537 $77,058 $31,479 $241 $171 $70 

7.00% $116,198 $85,999 $30,199 $258 $191 $67 

6.00% $123,697 $97,776 $25,919 $275 $217 $56 

500% $131,039 $114,047 $16,992 $291 $253 $38 

400% $138,227 $138.070 $158 $307 $307 $0 

3.00% $145,268 $177,361 ($32,093) $323 $394 ($71) 

2.00% $152.16« $254.080 ($101,914) $338 $565 ($226) 

Exampl* Syaterr 

Maturity:       Mature NN Type: RBNFCF1CE 

$200.000    -7- 

$150.000    -- 

($50.000) 

($100,000) 

($150,000) 

($200.000) 

Figure H-l.    Example of Cost/Benefit Display Spreadsheet 
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MISSION 

OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


